## MAS371 Applied Probability

Note: This is an old module occurrence.

You may wish to visit the module list for information on current teaching.

 Semester 2, 2017/18 10 Credits Lecturer: Prof Paul Blackwell uses MOLE Timetable Reading List Aims Outcomes Teaching Methods Assessment Full Syllabus

This unit will link probability modelling to statistics. It will explore a range of models that can be constructed for random phenomena that vary in time or space - the evolution of an animal population, for example, or the number of cancer cases in different regions of the country. It will illustrate how models are built and how they might be applied: how likelihood functions for a model may be derived and used to fit the model to data, and how the result may be used to assess model adequacy. Models examined will build on those studied in MAS275.

Prerequisites: MAS223 (Statistical Inference and Modelling); MAS275 (Probability Modelling)
No other modules have this module as a prerequisite.

## Outline syllabus

• Basic techniques: likelihood functions and their properties and use.
• Continuous time Markov chains: Introduction; generator matrices; informal coverage of stationary distributions and convergence.
• Inference for stochastic processes: deriving likelihood functions for stochastic processes; fitting models to data; model criticism.
• Applications of Markov chains: birth-death processes; queues.
• Point processes: homogeneous and inhomogeneous Poisson processes, spatial and marked point processes, inference for point processes.

## Aims

• Illustrate the construction of probability models for random phenomena;
• Introduce some of the common classes of models for random phenomena;
• Illustrate how probability models may be fitted to data;
• Discuss applications of fitted models.

## Learning outcomes

• Apply some of the common classes of probability models;
• Formulate and interpret models for random phenomena;
• Use likelihood-based methods to estimate parameters of probability models from data;
• Use statistical methods to investigate how well a model fits to a given data-set.

## Teaching methods

Lectures, problem solving

20 lectures, no tutorials

## Assessment

One 2 hour written examination.

## Full syllabus

1 Introduction
Types of models, examples of applications.

2 Basic Techniques
Likelihood functions and their properties; information; statement of key theorems.
3 Modelling with Discrete Time Markov chains
Model adequacy; time dependence; estimation of transition probabilities; long-term behaviour.
4 Inference for Discrete Time Markov Chain Models
Properties of MLEs; confidence intervals; testing particular values; goodness of fit; higher order chains.
5 Continuous Time Markov Chain Models
Introduction; generator matrices; calculation of transition probabilities; informal coverage of stationary distributions and convergence; likelihood and inference.
6 Point processes
Homogeneous and inhomogeneous Poisson processes, spatial and marked point processes, inference for point processes.

Type Author(s) Title Library Blackwells Amazon
C Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences
C Grimmett and Stirzaker Probability and Random Processes 519.2 (G) Blackwells Amazon
C Guttorp Stochastic Modeling of Scientific Data 519.23 (G) Blackwells Amazon
C Renshaw Modelling Biological Populations in Space and Time 574.55 (R) Blackwells Amazon
C Taylor and Karlin An Introduction to Stochastic Modelling 519.2 (T) Blackwells Amazon

(A = essential, B = recommended, C = background.)

Most books on reading lists should also be available from the Blackwells shop at Jessop West.

## Timetable

 Mon 12:00 - 12:50 lecture Hicks Lecture Theatre 7 Thu 09:00 - 09:50 lecture Hicks Lecture Theatre C