MAS330

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS

Autumn Semester 2012–13

2 hours 30 minutes

Topics in Number Theory (Level 3)

Answer **four** questions. If you answer more than four questions, only your best four will be counted.

No credit will be given for solutions which rely solely on the use of a calculator. Your solutions should give enough details to make it clear how you arrived at your answers.

- 1 (i) You publish (n, e) = (851, 97) in the RSA directory and receive 3. Decode it. (10 marks)
 - (ii) (a) Prove that $a^{1105} \equiv a \pmod{1105}$ for all integers a. (6 marks)
 - (b) The integer n > 1 is such that $a^{n-1} \equiv 1 \pmod{n}$ for all positive integers a smaller than n. Prove that n must be prime.

(4 marks)

- (iii) Find the remainder when 39! is divided by 215. (No credit will be given for a solution which does not use Wilson's theorem.) (5 marks)
- (i) State Euler's criterion. (2 marks)
 - (ii) State the Law of Quadratic Reciprocity. (2 marks)
 - (iii) Let p > 3 be a prime number. Show that the congruence

$$x^4 + 7x^2 + 12 \equiv 0 \pmod{p}$$

does not have a solution if and only if $p \equiv 11 \pmod{12}$, and find all the solutions in the case p = 43. (13 marks)

(iv) Use the fact that for any prime number p > 3

$$\left(\frac{3}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \text{ or } 11 \pmod{12} \\ -1 & \text{if } p \equiv 5 \text{ or } 7 \pmod{12} \end{cases}$$

to prove that there exist infinitely many primes of the form 12k + 11. (8 marks)

MAS330

 $\mathbf{2}$

Turn Over

MAS330

3	(i)	Show that $2^{13} - 1$ is prime. (7 marks)
	(ii)	Use the Law of Quadratic Reciprocity to prove that 3 is a quadratic non- residue modulo any Mersenne prime greater than 3. (5 marks)
	(iii)	(a) Define a perfect number. (1 mark)
		(b) State a formula which gives all even perfect numbers, and prove that every number given by your formula is perfect. You should define any notation you use. (6 marks)
		(c) Prove that the <i>product</i> of the positive divisors of an even perfect number n is n to the power of a prime number. (6 marks)
4	(i)	State formulae which describe all Pythagorean triples (x, y, z) , where the highest common factor of x, y, z is k . (3 marks)
	(ii)	Determine the parameters in your formulae in your answer to (i) that pro- duce the Pythagorean triple (363, 1980, 2013). (3 marks)
	(iii)	Determine all Pythagorean triples, not necessarily primitive, which include the number 671. (13 marks)
	(iv)	Prove that if (x, y, z) is a Pythagorean triple with $x^2 + y^2 = z^2$ then $x + y + z$ divides xy . (6 marks)
5	(i)	Express $\frac{35}{103}$ as a continued fraction. (4 marks)

(ii) Express $[3; 2, 1, \overline{1, 2}]$ in the form $a + b\sqrt{c}$, where a, b are rational numbers and c is a positive integer. (7 marks)

(iii) (a) Show that if n is a positive integer then $\sqrt{n^2 + 2n} = [n; \overline{1, 2n}]$. (7 marks)

(b) Find a convergent of $\sqrt{15}$ which differs from it by less than 10^{-5} and find a solution to Pell's equation

$$x^2 - 15y^2 = 1$$

in which x > 100.

(7 marks)

End of Question Paper