

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2012–2013

MAS422 Magnetohydrodynamics

2 hours

Answer all four questions.

1 (i) Using Ohm's law

$$\mathbf{J} = \sigma(\mathbf{E} + \mathbf{v} \times \mathbf{B}),$$

show, for the case where the conductivity σ is not constant, that

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B} - \nabla \eta \times (\nabla \times \mathbf{B})$$
 where $\eta = \frac{1}{\mu_0 \sigma}$. (6 marks)

- (ii) If the vector potential $\mathbf{A} = (0, xe^{-z}, 0)$, find the magnetic field \mathbf{B} and sketch the field lines clearly indicating the direction of the field. (9 marks)
- (iii) Consider a rotating object to be symmetric around a rotation axis. Thus, using cylindrical coordinates (r, ϕ, z)

$$\mathbf{v} = r\Omega(r, z)\hat{\phi}$$

is independent of ϕ . Here, Ω is the angular velocity. Now, consider that the object has axisymmetric poloidal field, frozen into plasma. Show that a steady state is possible only if Ω is constant along field lines.

(Hint: use
$$\mathbf{B} = \nabla \times \frac{1}{r} \psi(r, z) \hat{\phi}$$
). (10 marks)

Consider magnetic field in cylindrical polar coordinates (r, ϕ, z) . If a magnetic field $\mathbf{B} = \mathbf{B}(r)$ varies with r alone, why can it not possess a radial component (B_r) ?

1

2 (continued)

(ii) Consider a coronal loop with $\mathbf{B}_0=10$ Gauss (10^{-3} Tesla), $L=5\times 10^7$ m and $\rho_0=8\times 10^{-13}$ kg m⁻³. For these values the Alfvén speed is approximately $v_A=B_0/\sqrt{\mu\rho_0}=10^6$ m s⁻¹ and the wave number is $k=2\pi/L=1.3\times 10^{-7}$ m⁻¹. Find the period of standing wave oscillation in the coronal loop.

(3 marks)

(iii) For a compressible fluid, the equation of continuity is given by

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0.$$

Using the standard vector identity

$$\nabla \times (\mathbf{F} \times \mathbf{G}) = \mathbf{F}(\nabla \cdot \mathbf{G}) - \mathbf{G}(\nabla \cdot \mathbf{F}) + (\mathbf{G} \cdot \nabla)\mathbf{F} - (\mathbf{F} \cdot \nabla)\mathbf{G},$$

show that the induction equation, in the case where the magnetic diffusivity $\eta = 0$, can be rewritten as

$$\frac{\partial}{\partial t} \left(\frac{\mathbf{B}}{\rho} \right) + (\mathbf{u} \cdot \nabla) \frac{\mathbf{B}}{\rho} = \left(\frac{\mathbf{B}}{\rho} \cdot \nabla \right) \mathbf{u}$$

(9 marks)

(iv) Show that a force-free field obeys the equation

$$\nabla \times \mathbf{B} = \lambda \mathbf{B}$$
.

where λ is constant along each field line.

(1 mark)

For a one-dimensional force-free field of the form

$$\mathbf{B} = B_y(x)\mathbf{\hat{y}} + B_z(x)\mathbf{\hat{z}},$$

show that

$$B_y^2 + B_z^2 = B_0^2,$$

where B_0 is constant.

(6 marks)

In the particular case when $B_y = B_0 \cos x$, find $B_z(x)$ and λ . (3 marks)

3 (i) Calculate $(\mathbf{B} \cdot \nabla) \frac{\mathbf{B}}{\mu}$ for the magnetic field given by

$$\mathbf{B} = y\hat{x} + x\hat{y}.$$

What do you expect the directions of the magnetic tension to be in the x-axis? Show them with the arrows after plotting the fieldlines. (6 marks)

- **3** (continued)
 - (ii) For $B(x,t) = \phi(t)e^{-x^2/(4\eta t)}$ to satisfy

$$\frac{\partial B}{\partial t} = \eta \frac{\partial^2 B}{\partial x^2},$$

what is the condition on $\frac{\partial \phi}{\partial t}$?

(6 marks)

(iii) Consider a horizontal magnetic field $B(z)\hat{\mathbf{x}}$ in equilibrium with a plasma, satisfying

$$O = -\frac{d}{dz} \left(p + \frac{B^2}{2\mu} \right) - \rho g$$

where $\rho = p/RT$.

If $T = T_0$ and $B(z) = B_0 \frac{z}{H}$, where T_0 , B_0 , $H(=\frac{RT}{g})$ are constants, show that

$$\frac{dp}{dz} + \frac{p}{H} = -cz$$

where $c = \frac{B_0^2}{\mu H^2}$.

Solve this equation for p(z) if $p(0) = p_0$ in terms of H, p_0 , $\beta = \frac{2\mu p_0}{B_0^2}$.

(9 marks)

(iv) Consider a star with $R_* = 10^{11}$ cm and $B_* \approx 100$ G. If this star collapses to a neutron star with radius $R_{NS} = 10^6$ cm, estimate the neutron star's magnetic field strength noting that the magnetic flux is conserved.

(4 marks)

4 (i) Ignoring viscosity, gravity and diffusivity, write down closed MHD equations using the material derivative

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$$

(4 marks)

- (ii) Assume the background fluid to be stationary and homogeneous with constant density ρ_0 and pressure p_0 as a function of position. Further, consider a constant background magnetic field of strength B_0 , that points in the z-direction, write down the linearised MHD equations (linearising about the background quantities). (4 marks)
- (iii) Seeking the plane wave solutions of the form $\sim \exp{(i\mathbf{k}\cdot\mathbf{x}-i\omega t)}$ for the perturbed quantities, find the dispersion relations for Alfvén waves and magneto-acoustic waves using the linearised MHD equations obtained in (ii).

Formulae Sheet

$$abla^2 \mathbf{A} =
abla (
abla \cdot \mathbf{A}) -
abla imes
abla imes \mathbf{A}$$

	u	v	w	f	g	h
cartesian	x	y	z	1	1	1
spherical	r	θ	ϕ	1	r	$r\sin\theta$
cylindrical	r	ϕ	z	1	$\mid r \mid$	1

$$\nabla \cdot \mathbf{V} = \frac{1}{fgh} \left[\frac{\partial}{\partial u} (ghV_u) + \frac{\partial}{\partial v} (fhV_v) + \frac{\partial}{\partial w} (fgV_w) \right]$$

$$\nabla \times \mathbf{V} = \frac{1}{gh} \left[\frac{\partial}{\partial v} (hV_w) - \frac{\partial}{\partial w} (gV_v) \right] \hat{u} + \frac{1}{fh} \left[\frac{\partial}{\partial w} (fV_u) - \frac{\partial}{\partial u} (hV_w) \right] \hat{v} + \frac{1}{fg} \left[\frac{\partial}{\partial u} (gV_v) - \frac{\partial}{\partial v} (fV_u) \right] \hat{w}$$

End of Question Paper