MAS6370

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2014–2015

Algebraic Topology I

2 hours 30 minutes

Attempt all the questions. The allocation of marks is shown in brackets.

- 1 In this question you need to justify all your answers. If you claim that a statement is true you need to prove it and if you claim it is false you need to give a counterexample. You may quote results from the lectures as part of your justifications.
 - (i) Let $f, g: I \longrightarrow S^1$ be two maps from the unit interval I = [0, 1] to the unit sphere S^1 in \mathbb{R}^2 defined as follows:

$$f(x) = (\cos(6\pi x), \sin(6\pi x))$$
$$g(x) = (1, 0)$$

(a) Is
$$f$$
 homotopic to g ? (2 marks)

- (b) Is f loop homotopic to g? (2 marks)
- (ii) Is the two-dimensional real projective space $\mathbb{R}P^2$ homotopy equivalent to the two-dimensional sphere S^2 ? (3 marks)
- (iii) (a) Let D^2 be the unit disc in \mathbb{R}^2 ,

$$D^{2} = \{(x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} \le 1\}.$$

Is D^2 contractible? If so give a direct proof, if not give a reason. (3 marks)

- (b) Is the complement of the disc in the plane, $\mathbb{R}^2 \setminus D^2$, contractible? (3 marks)
- (iv) Calculate $\pi_1(\mathbb{R}P^2 \times T)$, where $\mathbb{R}P^2$ is two-dimensional real projective space and T is the torus. (3 marks)
- (v) When (if ever) can the fundamental group of a space depend on the choice of a basepoint? Illustrate your answer with examples and any appropriate results from lectures.
 (4 marks)

- 2 As previously we use the notation S^1 for the one dimensional sphere, D^2 for the two-dimensional disc and $\mathbb{R}P^2$ for two-dimensional real projective space. $S^1 \vee D^2$ denotes a wedge sum of S^1 and D^2 (where the base point for D^2 is chosen on the boundary) and $S^1 \vee \mathbb{R}P^2$ denotes a wedge sum of S^1 and $\mathbb{R}P^2$.
 - (i) (a) What is $\pi_1(S^1 \vee D^2)$? (1 mark)
 - (b) Calculate $\pi_1(S^1 \vee \mathbb{R}P^2)$ using Van Kampen's Theorem. (4 marks)
 - (c) What is the universal cover for each of the spaces S^1 , D^2 and $S^1 \vee D^2$? You are encouraged to draw pictures as part of your answer. (3 marks)
 - (d) Characterise all connected covers of $S^1 \vee D^2$ and prove that what you listed is the full characterisation. You are encouraged to draw pictures as part of your answer. (6 marks)
 - (ii) Construct a space X with $\pi_1(X) = \langle a, b, c | a^2 b c, a c b \rangle$ and prove that $\pi_1(X)$ is as requested. (6 marks)

MAS6370

3 (i) Let X and Y be topological spaces.

- (a) Define the singular chain complex $C_*(X)$ of X. (3 marks)
- (b) Given a continuous function $f: X \to Y$, explain how to define the group homomorphism $C_n(f): C_n(X) \to C_n(Y)$, for $n \ge 0$. (2 marks)
- (c) Show that the sequence of homomorphisms $\{C_n f\}$ gives a chain map $C_*(f): C_*(X) \to C_*(Y).$ (3 marks)
- (ii) Calculate all the homology groups of the chain complex C:

$$0 \xrightarrow{\delta_4} \mathbb{Z}\{a\} \xrightarrow{\delta_3} \mathbb{Z}\{b\} \oplus \mathbb{Z}\{c\} \oplus \mathbb{Z}\{d\} \xrightarrow{\delta_2} \mathbb{Z}\{e\} \oplus \mathbb{Z}\{f\} \xrightarrow{\delta_1} \mathbb{Z}\{g\} \xrightarrow{\delta_0} 0$$

where $C_n = 0$ for $n \ge 4$ and

$$\begin{split} \delta_3(a) &= 7d - 7b, \\ \delta_2(b) &= 15e - 6f, \quad \delta_2(c) = 30e - 12f, \quad \delta_2(d) = 15e - 6f, \\ \delta_1(e) &= 2g, \quad \delta_1(f) = 5g. \end{split}$$

(The notation $\mathbb{Z}{x}$ means the free abelian group on generator x.) (7 marks)

(iii) Consider the Δ -complex shown in the diagram below, a 2-simplex with identifications as indicated.

- (a) Write down the chain complex associated to this Δ -complex and calculate all its homology groups. (4 marks)
- (b) Explain the answer obtained in part (a) in geometric language.

(1 mark)

4 (i) Consider the cell complex X as pictured below.

Let A be the subcomplex consisting of the 0-cell x and the 1-cell c.

- (a) Write down the chain complexes of X and A and the relative chain complex $C_*(X, A)$. (4 marks)
- (b) Calculate the relative homology groups $H_n(X, A)$, for $n \ge 0$. (3 marks)
- (c) Describe the quotient space X/A and check that the reduced homology groups of X/A are the same as the relative homology groups calculated in part (b). (3 marks)
- (ii) (a) Consider a topological space $X = A \cup B$, where A and B are open subsets of X. Suppose that $\widetilde{H}_n(A) = \widetilde{H}_n(B) = \widetilde{H}_n(A \cap B) = 0$ for all $n \ge 0$. If $A \cap B$ is non-empty, show that $\widetilde{H}_n(X) = 0$ for all $n \ge 0$. (4 marks)
 - (b) Now consider a topological space $Y = A \cup B \cup C$, where A, B and C are open subsets of Y. Suppose that the reduced homology groups \widetilde{H}_n are zero for all $n \ge 0$ for all of the following spaces: A, B, C, $A \cap B, A \cap C, B \cap C, A \cap B \cap C$. Suppose also that each of the pairwise intersections, $A \cap B, A \cap C$ and $B \cap C$, is non-empty.

Show that $\widetilde{H}_n(Y) = 0$ for all $n \ge 2$.

Give an example of this situation where $\widetilde{H}_1(Y) \neq 0$. (6 marks)

End of Question Paper