**MAS344** 



The University Of Sheffield.

# SCHOOL OF MATHEMATICS AND STATISTICS

## Spring Semester 2014–2015

## **Knots and Surfaces**

#### 2 hours 30 minutes

Answer all questions.

**1** There is an invariant g(D) for oriented link diagrams D, called the *Conway* polynomial. For the unknot we have  $g(U_1) = 1$ , and there is a skein relation  $g(D_+) - g(D_-) = A g(D_0)$  (in the same context as the Jones polynomial skein relation).

Calculate  $g(U_2)$ ,  $g(H_-)$  and  $g(T_-)$  (where  $U_2$  consists of two unlinked circles,  $H_-$  is the negative Hopf link, and  $T_-$  is the negative trefoil). (13 marks)

## 2 Consider four oriented link diagrams related as follows:



Use the skein relation to prove that  $f(D_4) = -(A^2 + A^{-2})f(D_3)$  (where f(D) denotes the Jones polynomial of D). Explain your logic carefully. (10 marks)

## **3** Consider an oriented link diagram D with m crossings.

- (a) Explain the definition of  $\langle\!\langle D \rangle\!\rangle$ ,  $\langle D \rangle$  and f(D) (the unnormalised bracket, the Kauffman bracket and the Jones polynomial). (10 marks)
- (b) Let p denote the number of positive crossings, so there are m p negative crossings. Given a state S, let  $\alpha(S)$  be the number of type A splitting markers, so there are  $m \alpha(S)$  markers of type B. By rewriting the relevant formulae in terms of p and  $\alpha(S)$ , show that f(D) involves only even powers of A. (6 marks)

Let  $N_n$  denote the necklace with n rings, as illustrated below.  $\mathbf{4}$ 



Find the Jones polynomial of  $N_n$ .

(16 marks)

Let D be an oriented link diagram, and let D' be obtained from D by adding a  $\mathbf{5}$ positive loop as in Reidemeister move 1. Prove that f(D') = f(D). (13 marks)

6

(a) Let W be a surface word of the form  $W = AxBC\overline{x}$ . Explain geometrically why this represents the same surface as the word  $W' = AxCB\overline{x}$ .

(5 marks)

(b) Reduce the following surface words to standard form: (8 marks)

> $W_1 = uvwuvw$  $W_2 = uvwwvu$  $W_3 = uvw \,\overline{u} \,\overline{v} \,\overline{w}$  $W_4 = uvwx \,\overline{u} \,\overline{v} \,\overline{w} \,\overline{x}$

(c) Find the genus of the surface represented by the word  $abc\overline{b}d\overline{c}e\overline{a}\,\overline{d}\,\overline{e}$ . (6 marks)

- 7
- (a) Explain what is meant by a *covering pattern* for a surface, and explain how the Euler characteristic can be computed from a covering pattern.

(5 marks)

(b) If we fix an integer n > 0, then we can subdivide the unit square into smaller squares of side 1/n, and this gives a covering pattern for the square. Verify that all these covering patterns give the same value for the Euler characteristic, independent of the choice of n. (8 marks)

## End of Question Paper