

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2015-2016

Probability Modelling

2 hours

Candidates should attempt **ALL** five questions.

The maximum marks for the various parts of the questions are indicated. The paper will be marked out of 100. (Q1-21; Q2-21; Q3-20; Q4-18; Q5-20)

- A (delayed) renewal process is defined by tossing a biased coin with probability p (where 0) of giving a head repeatedly, and saying that a renewal occurs whenever a run of two consecutive heads is completed. You should assume that the results of different tosses are independent.
 - (a) Let u_n be the probability that, given that a renewal occurs at time t, a renewal occurs at time t+n. Explain why $u_1=p$, and give the value of u_n for $n \geq 2$. Hence show that the generating function U(s), defined as $\sum_{n=0}^{\infty} u_n s^n \text{ for } |s| < 1, \text{ has the form}$

$$U(s) = 1 + ps + \frac{p^2 s^2}{1 - s}.$$

(7 marks)

(b) Let v_n be the probability that a renewal occurs at time n. Give the values of v_0 and v_1 , and explain why $v_n = p^2$ for $n \ge 2$. Hence show that the generating function V(s), defined as $\sum_{n=0}^{\infty} v_n s^n$ for |s| < 1, has the form

$$V(s) = \frac{p^2 s^2}{1 - s}.$$

(6 marks)

- (c) Let f_n be the probability that, given that a renewal occurs at time t, the next renewal occurs at time t + n. What is the value of f_2 ? Explain your answer carefully.

 (3 marks)
- (d) Using the result that, in a delayed renewal process, V(s) = U(s)B(s), where B(s) is the probability generating function of the time until the first renewal, find the expected number of tosses until the first renewal.

(5 marks)

2 Let (Y_n) be a Markov chain on $S = \{1, 2, 3, 4\}$ with transition matrix

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & \frac{3}{4} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

- (a) Find the communicating classes of the Markov chain, and state which states are transient and which are recurrent. (6 marks)
- (b) Find all stationary distributions of the Markov chain. (7 marks)
- (c) Assume the chain starts at time 0 in state 1.
 - (i) Prove by induction that, for $n \ge 0$, $P(Y_n = 1) = \left(\frac{1}{3}\right)^n$ and $P(Y_n = 2) = \frac{1}{2}\left(1 \left(\frac{1}{3}\right)^n\right)$. (6 marks)
 - (ii) Assuming that the distribution of Y_n converges to a stationary distribution of the chain, which stationary distribution will that be?

 (2 marks)
- **3** Let (X_n) be a Markov chain on $S = \{1, 2, 3, 4, 5\}$ with transition matrix

$$P = \begin{pmatrix} 0 & p & 0 & 0 & 1-p \\ 1-p & 0 & p & 0 & 0 \\ 0 & 1-p & 0 & p & 0 \\ 0 & 0 & 1-p & 0 & p \\ p & 0 & 0 & 1-p & 0 \end{pmatrix}.$$

- (a) Assume 0 .
 - (i) Show that the chain is irreducible and aperiodic. (6 marks)
 - (ii) Verify that $\left(\frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{5} \quad \frac{1}{5}\right)$ is a stationary distribution for the chain. (2 marks)
 - (iii) Hence prove that, for all $i \in S$, $P(X_n = i) \to \frac{1}{5}$ as $n \to \infty$. You may use results from the course. (6 marks)
- (b) Assume p = 1.
 - (i) Is the chain still irreducible? Explain your answer carefully.

 (3 marks)
 - (ii) Is the chain still aperiodic? Explain your answer carefully.

 (3 marks)

- A gambler repeatedly plays a game where the player wins £2 with probability 1/3 and loses £1 with probability 2/3. The gambler has an initial fortune of £1, and will stop playing if and only if either he runs out of money or his fortune reaches at least £4, in which case you should think of his fortune as remaining the same in the future. Modelling the gambler's fortune as a Markov chain with state space $\{0, 1, 2, 3, 4, 5\}$:
 - (a) Give the transition matrix of the Markov chain. (4 marks)
 - (b) Find the probability that the gambler runs out of money. (7 marks)
 - (c) Find the expected number of games the gambler plays before stopping playing.

 (7 marks)
- 5 Assume that emails arrive in an account as a Poisson process with rate 4 per hour.
 - (a) What is the distribution of the number of emails which arrive between 9am and 11am on a given day? (3 marks)
 - (b) What is the probability that no emails arrive between 9am and 10am on a given day? (2 marks)
 - (c) Given that six emails arrive between 9am and 11am, what is the probability that exactly one of them arrives before 10am? (4 marks)
 - (d) Show that the distribution function of S_2 , the amount of time (in hours) after 9am that the second email arrives, is $1 e^{-4t}(1 + 4t)$ for t > 0.

 (6 marks)
 - (e) Each email is marked as spam with probability 3/4, independently of other emails. Describe the process of arrivals of non-spam emails, and give a reason for your answer.

 (5 marks)

End of Question Paper