MAS 442

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS Spring Semester 2015–2016

Galois Theory

2 hours 30 minutes

Attempt all the questions. The allocation of marks is shown in brackets. Throughout the paper K denotes a subfield of \mathbb{C} which contains \mathbb{Q} . All field extensions are finite.

- 1 (a) Let $K \subseteq L$ be a field extension. What does it mean for $\varphi \colon L \to L$ to be a *K*-automorphism ? (3 marks)
 - (b) (i) For a field extension $K \subseteq L$, define the Galois group $\operatorname{Gal}(L/K)$.
 - (ii) Define when a field extension $K \subseteq L$ is a *Galois extension*.

(4 marks)

- (c) Write down, justifying your answers,
 - (i) $|\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})|$ where $\sqrt[3]{2}$ is the real cube root of 2.
 - (ii) $|\operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q})|$ where $\omega = \exp(2\pi i/3)$. (6 marks)
- (d) What is the splitting field of the polynomial $x^3 2$ over \mathbb{Q} ? (3 marks)
- (e) Justifying your answer carefully,
 - (i) find a real number γ such that $\mathbb{Q}(\sqrt{3}, \sqrt{7}) = \mathbb{Q}(\gamma)$;
 - (ii) find the minimal polynomial in $\mathbb{Q}[x]$ of γ . (7 marks)
- (f) Define what it means for a group G to be *soluble*. (2 marks)

2 (a) Define the *n*th cyclotomic polynomial $\lambda_n(x) \in \mathbb{C}[x]$.

In the remainder of this question you may use without proof the result that

$$x^n - 1 = \prod_{d|n} \lambda_d(x). \tag{1}$$

- (b) Explain why any primitive 15th-root of unity will be a root of $x^{10} + x^5 + 1$.
- (c) Verify the polynomial identity

$$(x^{2} + x + 1)(x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1) = x^{10} + x^{5} + 1.$$
 (2)

(d) Explain why it now follows that

$$\lambda_{15}(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1.$$

(12 marks)

- (a) State, without proof, the Theorem of the Primitive Element (TPE). (2 marks)
 - (b) State, without proof, the Theorem that 'Automorphisms Preserve Roots' (APR). (4 marks)
 - (c) Let $K \subseteq L$ be an extension of fields. Using the TPE, or otherwise, prove that if L/K is Galois, then L is the splitting field of a polynomial $f(x) \in K[x]$. (4 marks)

In the remainder of this question you may assume without proof the converse of (c): if L is the splitting field of a polynomial $f(x) \in K[x]$, then L/K is Galois.

- (d) Let $K \subseteq M \subseteq L$ be field extensions. Prove that if L/K is Galois, then L/M is Galois. (4 marks)
- (e) Let $K \subseteq M \subseteq L$ be field extensions. Prove that if M/K is Galois, then $\varphi(M) = M$ for all $\varphi \in \operatorname{Gal}(L/K)$. (5 marks)
- (f) Now assume that in $K \subseteq M \subseteq L$ both L/K and M/K are Galois. Prove that $\operatorname{Gal}(L/M)$ is a normal subgroup of $\operatorname{Gal}(L/K)$ and that the quotient group is isomorphic to $\operatorname{Gal}(M/K)$. State clearly any general result from field theory or group theory which you use. (19 marks)

3

- 4 Let $\xi = \exp(2\pi i/7)$ and write $\beta = \xi + \xi^{-1}$ and $\gamma = \xi + \xi^2 + \xi^4$.
 - (a) Find a cubic polynomial with integer coefficients which has β as a root. (5 marks)
 - (b) Express γ^2 in terms of powers of ξ and hence find a quadratic polynomial with integer coefficients which has γ as a root. (3 marks)
 - (c) Show that $\mathbb{Q}(\sqrt{-7}) \subseteq \mathbb{Q}(\xi)$. (2 marks)
 - (d) You are given that $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q})$ has six elements. List the elements, without proof. (3 marks)
 - (e) Choose $\theta \in \operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q})$ such that $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q}) = \{\operatorname{id}, \theta, \theta^2, \theta^3, \theta^4, \theta^5\}$. Deduce that $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q})$ is cyclic.

Draw the lattice of subgroups for $\operatorname{Gal}(\mathbb{Q}(\xi)/\mathbb{Q})$, describing the subgroups in terms of their elements. (9 marks)

(f) Draw the lattice of subfields of $\mathbb{Q}(\xi)$ which correspond, by the Fundamental Theorem of Galois Theory, to the lattice of subgroups in (e). (3 marks)

End of Question Paper