

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS Autumn Semester 2007-2008

MATHEMATICS III (Control and Aerospace Engineering) 2 hours

Answer **four** questions. You are advised **not** to answer more than four questions; if you do, only your best four will be counted.

1. In this problem the following matrix A will be used.

$$A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 3 & 4 & 1 & 2 \end{bmatrix}$$

- a) Reduce the matrix *A* to echelon form and show that it has rank equal to 2. (5 marks)
- b) Find the null space and the range space of the matrix *A*. What is the dimension of each of the two spaces?

(8 marks)

c) Determine the rank of the augmented matrix (A|b) of the following matrix equations. Do the equations have a solution? If so, determine the full solution, including all the free parameters.

$$A\begin{pmatrix} x\\ y\\ z\\ t \end{pmatrix} = \begin{pmatrix} 1\\ 2\\ -1\\ 4 \end{pmatrix}, \qquad A\begin{pmatrix} x\\ y\\ z\\ t \end{pmatrix} = \begin{pmatrix} 1\\ 2\\ -1\\ 5 \end{pmatrix}$$

(12 marks)

- 2. a) A and B are $n \times n$ matrices, and it is given that B has distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ with corresponding eigenvectors $X_1, X_2, ..., X_n$. If $B = T^{-1}AT$, show that A has the same eigenvalues with corresponding eigenvectors $TX_1, TX_2, ..., TX_n$. (4 marks)
 - b) Show that the matrix $A = \begin{pmatrix} -1 & 2 \\ 2 & 1 \end{pmatrix}$ has eigenvalues $\pm \sqrt{5}$. Find the corresponding *normalised* eigenvectors. (12 marks)
 - c) Hence, or otherwise, construct the matrix *T* so that $B = T^{-1}AT$ is a diagonal matrix. (3 marks)
 - d) What are the eigenvalues of the matrices A^2 and $A^3 A$? Find the matrix $T^{-1}A^2T$. (6 marks)

3. a) For the 2×2 matrix A, it is given that

$$e^A = I + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

and that A satisfies its own characteristic equation (the Cayley-Hamilton theorem) of the form

$$A^2 = aA + bI$$

where a and b are constants.

Hence deduce that

$$e^A = \alpha A + \beta I$$

for some constants α and $\beta.$

b) Show that the matrix
$$B = \begin{pmatrix} 0 & 6 \\ 1 & 1 \end{pmatrix}$$
 has eigenvalues 3 and -2. (2 marks)

Hence, evaluate the matrices B^6 and e^B .

(13 marks)

(10 marks)

[Note: It may be assumed that all the infinite series that occur in this question converge.]

4. a) Determine whether the sets of vectors

(i)
$$\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 10 \\ -3 \\ 2 \end{pmatrix}$
(ii) $\begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 2 \\ -3 \\ 2 \end{pmatrix}$

(8 marks)

are linearly dependent or linearly independent.

b) Show that the equations

$$\begin{pmatrix} 1 & 1 \\ 2 & -2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 10 \\ -3 \\ 2 \end{pmatrix}$$

have a unique solution.

c) Show that the equations

$$\begin{pmatrix} 1 & 1 \\ 2 & -2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \\ -3 \\ 2 \end{pmatrix}$$

have no solution.

d) Given that the nearest least squares solution, u^* , of the matrix equation Au = b is

$$u^* = (A^T A)^{-1} A^T b \,,$$

determine the nearest least squares solution of the set of equations in part (c).

(8 marks)

(4 marks)

(5 marks)

5. a) Show that the quadratic form

 $x_1^2 + x_2^2 + 3x_1x_2$

can be written in the form $X^T A X$, where X is the vector of the variables and A is a 2×2 matrix.

(4 marks)

Find the matrix
$$U$$
 so that $X = UY$, with $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, transforms the quadratic form to $\lambda y_1^2 + \mu y_2^2$.

(10 marks)

Is the quadratic form positive definite, negative definite, or indefinite?

(1 marks)

(10 marks)

b) Find the stationary points of the function

$$f(x,y) = x^3 + y^3 + 3xy$$

and investigate their nature.

6. a) Find the matrix representation of the map

$$T = 2\frac{d^2}{dx^2} - \frac{d}{dx} + 1$$

acting on quadratics.

(8 marks)

Hence, find a solution of the equation $Tu = x^2$.

(5 marks)

b) Use the method of Lagrange multipliers to determine the minimum of

$$f(x,y) = x^2 + y^2$$

subject to the constraint

$$\phi(x, y) = 2x^2 + y^2 - 1 = 0.$$

(12 marks)

End Of Question Paper

AMA244