

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS

Autumn Semester 2011–12

Foundation Year Mathematics I

Attempt all questions. The allocation of marks is shown in brackets.

1 Express

$$\frac{x}{x+y} + \frac{x}{x-y} - \frac{1}{(x+y)(x-y)}$$

as a single fraction, simplifying your answer where possible. (1 mark)

2 Simplify

$$\frac{a^{2}t^{3}x^{4} + 2a^{2}t^{3}x^{2}y^{4} + a^{2}t^{3}y^{8}}{ta^{2}y^{8} - ta^{2}x^{4}}$$
(2 marks)

as much as possible.

3 Simplify

$$\frac{(10)^{\frac{2}{3}} \times (35)^{-\frac{1}{3}} \times \sqrt[3]{14}}{(56)^{-\frac{1}{3}}}$$

as much as possible. Show all your working, which should include using laws of indices. (2 marks)

4 Rationalize the denominator of
$$\frac{2\sqrt{2}}{1-5\sqrt{2}}$$
. (1 mark)

MAS001

Turn Over

1 hour 30 minutes

5 (i) Factorize
$$4x^2 - 7x - 2$$
. (1 mark)

(ii) Solve the simultaneous equations

$$\begin{cases} 3x^2 - 6y - x &= 20 - x^2 \\ y - x + 3 &= 0. \end{cases}$$

(4 marks)

6 (i) Complete the square for
$$x^2 + 6x + 8$$
. (1 mark)

(ii) Solve
$$x^2 + 6x + 8 = 0.$$
 (2 marks)

- (iii) Draw the graph of $y = x^2 + 6x + 8$ and indicate clearly the minimum point of the curve and where the curve crosses the x- and y-axes. (2 marks)
- (iv) Let f be the function with domain $\{x \in \mathbb{R} : -6 < x \leq -1\}$ and rule $f(x) = x^2 + 6x + 8$. Find the range of f. (1 mark)
- 7 Let $p(x) = x^4 7x 2$, $q(x) = 4x^3 5$ and $r(x) = 2x^2 + 2x + 1$.
 - (i) Expand p(x) q(x)r(x), collecting like terms together. What is the coefficient of x^3 in p(x) q(x)r(x)? (2 marks)

(ii) Find
$$r(q(x))$$
. (2 marks)

8 Express the following fractions as partial fractions. Your answer should include a check.

(i)
$$\frac{4x-11}{(x+4)(2x-1)}$$
. (5 marks)

(ii)
$$\frac{2x^5 - 8x^3 + 5x^2 - 4}{x^2(x^2 - 4)}$$
. (8 marks)

9 Let f be the function with rule $f(x) = 1 + \frac{x}{2-x}$ and domain $\{x \in \mathbb{R} : x \neq 2\}$.

- (i) Find the inverse function f^{-1} . (3 marks)
- (ii) What is the domain of f^{-1} ? (1 mark)
- (iii) What is the range of f^{-1} ? (1 mark)
- 10 Sketch the graphs of the following functions between $-\pi$ and π , making sure to mark important points.
 - (i) $y = \tan(x)$. (1 mark)
 - (ii) $y = \tan(x) 1.$ (2 marks)
 - (iii) $y = -\tan(x)$. (1 mark)
- **11** Simplify

$$\ln(e^{x+2} + 2e^{x+1} + e^x) - x.$$
 (3 marks)

You should show all your working.

12 Solve the following equation for x, giving your answer in terms of $\ln 2$ and $\ln 5$. Your answer must be **exact**, so do not use a calculator.

$$5^{x-1} = \frac{(4e)^x}{10^{x+1}}.$$

(4 marks)

End of Question Paper

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2011-2012

3 hours

Mathematics I

Attempt all the questions. The allocation of marks is shown in brackets.

1 Differentiate the following functions with respect to *x*:

(i)
$$f(x) = 3x^3 + 2 - 3x^{-1};$$

(ii)
$$f(x) = (\sin x).(\ln x);$$

(iii)
$$f(x) = \frac{e^x}{\cos x};$$

(iv)
$$f(x) = e^{\sin x}$$
. (8 marks)

2 (i) State the definition of the derivative of a function f(x) (your definition should involve a limit). (3 marks)

- (ii) Use the method of first principles to differentiate $f(x) = x^{-1}$. (5 marks)
- 3 (i) Find all stationary points on the curve described by the graph of the function $f(x) = \frac{x^6}{6} - x^4$, and determine their nature. (8 marks)
 - (ii) Use the information from Q3 (i) to sketch the graph of f(x). (4 marks)

4 (i) Find
$$\frac{dy}{dx}$$
 when $x(t) = e^{2t}$ and $y(t) = \tan t$. (4 marks)

(ii) Find
$$\frac{dy}{dx}$$
 when $xy + 3y + x^2 = 0.$ (4 marks)

(iii) Find $\frac{dy}{dx}$ when $y = 3^x$. (Hint: take natural logarithms and use implicit differentiation). (4 marks)

MAS001

Turn Over

- 5 (i) You are given that the surface area of a sphere of radius r is $4\pi r^2$ and that the radius of the sphere is decreasing at a rate of 1mm per second. Calculate the rate of change of the surface area when the radius of the sphere is 1cm. (5 marks)
 - (ii) Determine the maximum area of a rectangle with fixed perimeter 8cm. (5 marks)
- 6 Find the indefinite integrals in Parts (i) and (ii), and evaluate the definite integrals in Parts (iii) and (iv). You should simplify your answers as much as possible.

(i)
$$\int 3x^2 - x^{-2} dx;$$

(ii)
$$\int x e^{-x^2} dx.$$

(iii)
$$\int_1^2 \frac{1}{x} dx;$$

(iv)
$$\int_{\ln 2}^{\ln 3} x e^x dx.$$
 (10 marks)

7 Differentiate $f(x) = \sin^{-1}(-\sqrt{x^3})$ with respect to x. Hence or otherwise find $\int \sqrt{\frac{x}{1-x^3}} dx$. (8 marks)

8 Find the following indefinite integrals: (i) $\int (\sin(x))^3 dx;$ (ii) $\int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx.$ (10 marks)

9 Let $f(x) = x^2 - 2x - 3$ and $g(x) = (x+1)(x^2 - 4)$. By simplifying $\frac{f(x)}{g(x)}$ evaluate $\int_3^4 \frac{f(x)}{g(x)} dx$. (10 marks)

MAS001

Continued

- 10 (i) Determine the area of the region bounded by the lines x = -1, x = 1 and the graphs of the functions $f(x) = x^3$ and $g(x) = -x^3$. (Remark: the region looks a fancy bowtie \bowtie).
 - (ii) Using the fact that the semi-circle in the upper half plane centred at (0,0) of radius r is the graph of the function $f(x) = +\sqrt{r^2 x^2}$, find the volume of the sphere of radius r. (12 marks)

End of Question Paper