MAS156

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2011–2012

MAS156 Mathematics (Electrical)

3 hours

Attempt ALL questions.

Each question in Section A carries 3 marks and each question in Section B carries 8 marks.

Section A

- **A1** Determine whether the function $f(x) = [\sin(\pi + x) \sin(\pi x)]^2$ is even, odd or neither.
- **A2** State the fundamental period of each of the following functions.
 - (i) $f(x) = \cos(2x + \pi);$
 - (ii) $g(x) = \tan\left(\frac{x}{3}\right);$
 - (iii) $h(x) = \sin(\omega x + \phi)$.
- **A3** Find the modulus and principal argument of $\frac{1+j}{2j-1}$.
- **A4** Find the first and second derivatives of ln(2 + cos x).

A5 Let
$$y = \cosh x$$
. Show that $y = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$.

A6 Let
$$\mathbf{a} = (2, 0, 1)$$
, $\mathbf{b} = (-1, -1, -1)$ and $\mathbf{c} = (1, 2, 0)$. Calculate $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$.

A7 Evaluate
$$\int \frac{\sin x \cos x}{(1+\sin^2 x)^2} dx.$$

A8 Evaluate
$$\int \ln(x^2 + 3) dx$$
.

A9 Solve the differential equation

$$(x+2)\tan y \frac{dy}{dx} = 1,$$

given that $y(0) = \pi/4$.

A10 Find the inverse Laplace transform of the function
$$\frac{2s+3}{s^2+2s+10}$$
.

A11 Find
$$\lim_{x\to 0} \frac{\ln(1+2x^2)}{\sin^2 x}$$
.

A12 If
$$A = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ evaluate any of AB , A^TB , AB^T , A^TB^T which exist.

Section B

B1 By factorizing $a^2 + a - 2$, or otherwise, find all six solutions to $z^6 + z^3 - 2 = 0$ in exponential form and show that the product of these six solutions is -2. Can you find another justification for this result?

B2 Find the amplitude, A(t), and phase, $\theta(t)$, of $z(t) = (\cos t)e^{tj/2}$ for $0 \le t \le 2\pi$, drawing graphs of both quantities. For which values of t is $0 \le A(t) \le \frac{1}{2}$?

B3 Let
$$z = \sinh(xy)$$
. Calculate $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2}$.

Now make the substitution x = u + v, y = u - v in z, and calculate $\frac{\partial^2 z}{\partial u \partial v}$. What do you notice?

B4 The position vector of a particle at time t is given by $\mathbf{r} = \cos(\omega t)\mathbf{i} + \sin(\omega t)\mathbf{j}$. Show that the acceleration \mathbf{a} of the particle is perpendicular to the velocity \mathbf{v} , and that $\mathbf{a} = -\omega^2 \mathbf{r}$. What is the magnitude of the acceleration if $\omega = \pi$?

B5 Evaluate
$$\int \frac{x^2 + 6x + 20}{(x+3)(2x^2 + 8x + 17)} dx.$$

B6 Find the solution to the differential equation

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = x^2$$

when y(0) = 0 and y'(0) = 0.

B7 Devise a Newton-Raphson iterative scheme to solve the equation

$$x \ln x = 7$$
.

Find x_0 , the integer which is nearest the root. Use your scheme to find the root correct to three decimal places.

For what range of values for x_0 will your scheme converge to the root?

B8 Find the relationship between α and β if the system of equations

$$x + 2y - 3z = 0$$

$$3x + y + z = 0$$

$$2x + \alpha y + \beta z = 0$$

has a non-trivial solution.

Find the general solution when $\alpha = 2$ and $\beta = -2$.

Find α and β if the equations

$$x + 2y - 3z = 0$$

$$3x + y + z = 1$$

$$2x + \alpha y + \beta z = 0$$

have infinitely many solutions.

End of Question Paper

Formula Sheet for MAS156

Trigonometry

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

$$1 + \cot^2 \theta = \csc^2 \theta$$

$$\cos^2 \theta = (1 + \cos 2\theta)/2$$

$$\sin^2 \theta = (1 - \cos 2\theta)/2$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$a \cos \theta + b \sin \theta = R \cos(\theta - \alpha) \text{ where}$$

$$R = \sqrt{a^2 + b^2}, \cos \alpha = a/R \text{ and } \sin \alpha = b/R$$

Complex Numbers $(j = \sqrt{-1})$

De Moivre's Theorem Euler's Relation: $e^{j\theta} = \cos \theta + j \sin \theta$ $(\cos\theta + j\sin\theta)^n = \cos n\theta + j\sin n\theta$

Hyperbolic Functions

$$cosh x = \frac{1}{2} (e^{x} + e^{-x})
sinh x = \frac{1}{2} (e^{x} - e^{-x})
cosh^{2} x - sinh^{2} x = 1
sech^{2} x + tanh^{2} x = 1
cosh^{2} x + sinh^{2} x = cosh 2x
2 sinh x cosh x = sinh 2x
cosh^{2} x = (1 + cosh 2x)/2
sinh^{2} x = -(1 - cosh 2x)/2$$

Series

Sum of an arithmetic series:

$$\frac{first \ term + last \ term}{2} \times (number \ of \ terms)$$

Sum of a geometric series:
$$1 + x + x^2 + ... + x^{n-1} = \frac{1 - x^n}{1 - x}$$

Binomial theorem:
$$(1+x)^n=1+nx+\frac{n(n-1)}{2!}x^2+\ldots+\binom{n}{r}x^r+\ldots$$
 where $\binom{n}{r}=\frac{n(n-1)(n-2)\ldots(n-r+1)}{r!}$
If n is a positive integer then the series terminates and the result is true

for all x, otherwise, the series is infinite and only converges for |x| < 1. $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$

$$\sin x = x - \frac{x^{5}}{3!} + \frac{x^{5}}{5!} - \frac{x^{5}}{7!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

valid for all x

 $\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$

$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \quad (-1 < x \le 1)$$

Vectors

For vectors $\mathbf{a} \equiv a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} \equiv a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$:

Magnitude and unit vector:

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}, \qquad \hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

Scalar product:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Vector Product:

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}}$$

= $(a_2b_3 - a_3b_2) \, \mathbf{i} + (a_3b_1 - a_1b_3) \, \mathbf{j} + (a_1b_2 - a_2b_1) \, \mathbf{k}$

Equation of a line:

the point with position vector \mathbf{r}_0 , is given by The equation of a line in the direction of a, and passing through

$$\mathbf{r} = \mathbf{r}_0 + \lambda \mathbf{a}$$

where λ is a variable parameter.

General Differentiation Formulae

$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{vu' - uv'}{v^2}$$

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx}$$

Differentiation

$\sin x$ Function $\cos x$ Derivative

$$\begin{array}{ccc}
\sin x & \cos x \\
\cos x & -\sin x \\
\tan x & \sec^2 x
\end{array}$$

$$\tan x$$
 $\sec^2 x$
 $\cot x$ $-\csc^2 x$
 $\sec x$ $\sec x \tan x$
 $\csc x$ $-\csc x \cot x$

 $\sec x$

 $\cot x$

$$\sinh x$$
 $\cosh x$ $\sinh x$ $\sinh x$ $\sinh x$ $\sinh x$ $\sinh x$ $\operatorname{sech}^2 x$ $\coth x$ $-\operatorname{cosech}^2 x$ $\operatorname{sech} x$ $-\operatorname{sech} x \tanh x$

 $-\operatorname{sech} x \tanh x$

$$\cos^{-1} x \qquad \frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$$

$$\tan^{-1} x \qquad \frac{1}{1+x^2}$$

$$cos^{-1} x \qquad \frac{-1}{\sqrt{1-x^2}}
tan^{-1} x \qquad \frac{1}{1+x^2}
cot^{-1} x \qquad \frac{-1}{1+x^2}
sinh^{-1} x \qquad \frac{1}{\sqrt{x^2+1}}
cosh^{-1} x \qquad \frac{1}{1-x^2}
coth^{-1} x \qquad \frac{1}{1-x^2}$$

$$\frac{1}{1-x^2}$$

 $\tanh^{-1} x$

 $coth^{-1} x$

Integration

Function

Integral

$$\frac{1}{a^2 + x^2}$$

$$\frac{1}{a^2 - x^2}$$

$$\frac{1}{a^2 - x^2}$$

$$\frac{1}{a} tanh^{-1} \left(\frac{x}{a}\right)$$

$$\frac{1}{\sqrt{a^2 - x^2}}$$

$$\frac{1}{\sqrt{x^2 + a^2}}$$

$$\sinh^{-1} \left(\frac{x}{a}\right)$$

$$\sinh^{-1} \left(\frac{x}{a}\right)$$

$$\cosh^{-1} \left(\frac{x}{a}\right)$$

$$\frac{\sinh^{-1}\left(\frac{x}{a}\right)}{\cosh^{-1}\left(\frac{x}{a}\right)}$$

$$\frac{\sinh^{-1}\left(\frac{x}{a}\right)}{\cosh^{-1}\left(\frac{x}{a}\right)}$$

$$\ln \tan \left(\frac{x}{2}\right) \text{ or } \ln(\csc x - \cot x)$$

$$\ln \tan \left(\frac{x}{2} + \frac{\pi}{4}\right) \text{ or } \ln(\sec x + \tan x)$$

 $\csc x$

 $\sec x$

$$\operatorname{cosech} x$$
 $\operatorname{ln} \tanh \left(\frac{x}{2} \right)$

If
$$t = \tan\left(\frac{x}{2}\right)$$
 then $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$ and $\frac{dx}{dt} = \frac{2}{1+t^2}$.

Integration-by-parts

$$\begin{split} \int_a^b uV \, dx &= \left[u \times (integral \ of \ V) \right]_a^b - \int_a^b (integral \ of \ V) \times \frac{du}{dx} dx \\ \text{or } \int_a^b u \frac{dv}{dx} dx &= \left[uv \right]_a^b - \int_a^b v \frac{du}{dx} dx \end{split}$$

Taylor expansion of f(x) about x = a

$$f(a) + (x-a)f^{(1)}(a) + \frac{(x-a)^2}{2!}f^{(2)}(a) + \dots + \frac{(x-a)^{n-1}}{(n-1)!}f^{(n-1)}(a) + \dots$$

Maclaurin expansion of f(x)

$$f(0) + xf^{(1)}(0) + \frac{x^2}{2!}f^{(2)}(0) + \ldots + \frac{x^{n-1}}{(n-1)!}f^{(n-1)}(0) + \ldots$$

Newton-Raphson formula for the root of f(x) = 0

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Table of Laplace transforms

f(t)	$F(s) = \mathcal{L}(f(t))$
$\int t^n$	$\frac{n!}{s^{n+1}}$ $(n=0,1,2,\ldots)$
e^{at}	$\frac{1}{s-a}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sinh \omega t$	$\frac{\omega}{s^2 - \omega^2}$
$\cosh \omega t$	$\frac{s}{s^2 - \omega^2}$
$e^{at}f(t)$	F(s-a) (shift theorem)
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$