MAS315

The University Of Sheffield.

SCHOOL OF MATHEMATICS AND STATISTICS Autumn Semester 2011–12

WAVES

Marks will be awarded for your best FOUR answers. The marks awarded to each question or section of question are shown in italics.

1 The one-dimensional wave equation for $\phi(x, t)$ is

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}.$$

(i) Show that the general solution for $\phi(x, t)$ is

$$\phi(x,t) = f(x-ct) + g(x+ct),$$

where f and g are arbitrary functions.

(11 marks)

(ii) Given that

$$\phi(x,0) = \begin{cases} 0 & (-\infty < x \le -a) \\ a + x & (-a \le x \le 0) \\ a - x & (0 \le x \le a) \\ 0 & (a \le x < \infty), \end{cases}$$

and that
$$\frac{\partial \phi(x,0)}{\partial t} = 0$$
 for all x, find $\phi(x,t)$ where $a > 0$.

(9 marks)

(iii) Sketch the graph of $\phi(x, t)$ against x when ct = 2a.

(5 marks)

2 hours

2 A uniform finite string of length l and mass per unit length ρ occupies the interval $0 \le x \le I$ and undergoes transverse vibrations with displacement y(x, t), where $c^2 y_{xx} = y_{tt}$, and c^2 is a constant. The tension in the string is ρc^2 . You are given that

(a)
$$y(0, t) = y(l, t) = 0;$$

(b) $y(x, 0) = (h/l^2)x(l-x)$ where *h* is a constant;
(c) $\dot{y}(x, 0) = 0;$
(d) $y(x, t) = \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi x}{l}\right) \cos\left(\frac{n\pi ct}{l}\right)$, where the $a_n (n = 1, 2, 3, ...)$ are constants.

(i) Verify that the series in (d) satisfies the PDE and conditions (a) and (c). Find the a_n so that (b) is satisfied.

(17 marks)

Deduce that the potential energy stored in the string at time t is (ii)

$\frac{16\rho h^2 c^2}{\pi^4 l} \sum_{m=2}^{\infty} \frac{\cos^2\left\{\frac{(2m+1)\pi ct}{l}\right\}}{(2m+1)^4}.$

(8 marks)

3 (A model of a stethoscope.) Sound waves propagate in the positive Oz direction inside the circular cylinder r = a (where $r^2 = x^2 + y^2$ in standard notation). The velocity potential ϕ satisfies

$$c^{2}\left\{\frac{\partial^{2}\phi}{\partial r^{2}} + \frac{1}{r}\frac{\partial\phi}{\partial r} + \frac{\partial^{2}\phi}{\partial z^{2}}\right\} = \frac{\partial^{2}\phi}{\partial t^{2}},$$
(1)

where the constant *c* is the speed of sound.

(i) State how c is related to the pressure (p) – density (p) relationship. Determine the value of c for the case when this is

$$\left(\frac{\rho}{\rho_0}\right) = \left(\frac{\rho}{\rho_0}\right)^{\gamma}$$
,

where $\gamma = 1.4$, and ρ_0 and ρ_0 are the ambient pressure and density with $\rho_0 \approx 1.013 \times 10^5 \text{ N m}^{-2}$, $\rho_0 \approx 1.293 \text{ kg m}^{-3}$.

(6 marks)

(ii) Seek solutions of (1) of the form

$$\phi = g(r) \exp\{i(kz - \omega t)\},\$$

where k and ω are real positive constants. Show that

$$g''(r) + \frac{1}{r}g'(r) + m^2g(r) = 0$$
⁽²⁾

where m^2 is a constant, depending on ω , c and k. (You may assume that $m^2 > 0.)$

(7 marks)

MAS315

Question 3 continued on next page

3 (continued)

(iii) Given that ϕ is bounded at r = 0, that $\frac{\partial \phi}{\partial r} = 0$ at r = a, and that the only solution of (2) that is bounded at r = 0 must be a multiple of $J_0(mr)$, where $J_0(\xi)$ is the Bessel function of order zero, show that $m = m_n$ (n = 1, 2, ...), where $m_n = \beta_n/a$ and β_n is the *n*th non-zero root of $J'_0(\xi) = 0$. Given that the β_n are discrete, that $\beta_1 < \beta_2 < ...$, and that $\beta_n \to \infty$ as $n \to \infty$, deduce that, for fixed ω , there are a finite number of positive values of k.

(12 marks)

4 The equilibrium position of the free surface of a liquid of infinite depth is z = 0, where z is measured vertically upwards. A surface wave causes the displacement of this surface to be $\eta(x, t)$, where x is measured along the undisturbed surface and

$$\eta = a\sin(kx - \omega t),$$

with *a*, *k* and ω being positive constants with *a* small. You are given that the velocity potential $\phi = \phi(x, z, t)$ satisfies

$$\phi_{xx} + \phi_{zz} = 0.$$

You are also given that (a) $\phi_z \to 0$ as $z \to -\infty$; (b) $\phi_z = \eta_t$ at z = 0; (c) $\phi_t + g\eta = 0$ at z = 0.

(i) Give a brief physical interpretation of (a), (b) and (c).

(6 marks)

(ii) Find $\phi(x, z, t)$ and show that $\omega^2 = gk$.

(13 marks)

(iii) Determine the phase velocity c and the group velocity c_g in terms of k. Show that $c_g = c/2$, and state two quantities that are propagated with speed c_g .

(6 marks)

5 (i) Solve the equation

$$yz_x + xz_y = xy$$
,

given that $z = e^{-y^2}$ on x = 0 for $y \ge 0$ and that $z = e^{-x^2}$ on y = 0 for $x \ge 0$. [We use the notation $z_x = \frac{\partial z}{\partial x}$ etc.]

(13 marks)

(ii) On what region D in the x-y plane is the solution unique? Verify that z is everywhere continuous in D, but that z_x and z_y are discontinuous across one curve. Determine the curve of discontinuity.

(7 marks)

(iii) More generally, suppose that within a region D^* in the x-y plane, the solution z = z(x, y) of

$$Pz_x + Qz_y = R,$$

where P, Q, R are continuous functions of x, y, z, is everywhere continuous, but that there may be discontinuities in z_x and z_y across a curve Γ . Show that dy/dx = Q/P on Γ .

(5 marks)

End of Question Paper