

SCHOOL OF MATHEMATICS AND STATISTICS

hold.

Spring Semester 2011–2012

Optics and Symplectic Geometry

2 hours 30 minutes

Answer four questions. You are advised not to answer more than four questions: if you do, only your best four will be counted.

Throughout the paper I denotes an identity matrix and J denotes a matrix of the form $\begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$. All matrices have real entries. The standard symplectic form Ω on \mathbb{R}^{2n} is defined by $\Omega(Z, Z') = Q \cdot P' - P \cdot Q'$, where Z = (Q, P) and Z' = (Q', P') are elements of \mathbb{R}^{2n} . In Questions 2 to 5 you may, if you wish, use results from Question 1.

- 1 (i) (a) Define what it means for a $2n \times 2n$ matrix S to be symplectic. (2 marks)
 - (b) Prove that the $2n \times 2n$ matrix J is invertible. (2 marks) Let $S = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ be a $2n \times 2n$ matrix in block form, where A, B, C and D denote $n \times n$ matrices.
 - (c) Prove that S is symplectic if and only if the three equations

$$A^{\mathsf{T}}C = C^{\mathsf{T}}A, \qquad B^{\mathsf{T}}D = D^{\mathsf{T}}B, \qquad A^{\mathsf{T}}D - C^{\mathsf{T}}B = I,$$
 (4 marks)

- (d) Assume that S is symplectic. Show that it is invertible and establish a formula for S^{-1} in block form. (3 marks)
- (ii) (a) List the three properties which a map $\omega \colon \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ must have in order to be a symplectic form on \mathbb{R}^{2n} . (3 marks)
 - (b) Define the notion of symplectic basis for $(\mathbb{R}^{2n}, \omega)$. where ω is any symplectic form on \mathbb{R}^{2n} . (3 marks)
 - (c) Let $E_1, \ldots, E_n, F_1, \ldots F_n$ be vectors in \mathbb{R}^{2n} . Show that they form a symplectic basis of $(\mathbb{R}^{2n}, \Omega)$ if and only if the matrix with columns $E_1, \ldots, E_n, F_1, \ldots, F_n$ is symplectic. (8 marks)

Consider a beach, with a straight coastline, as shown in Figure 1. Person M, standing on the beach, sees person S in the water, struggling and getting into difficulties. M can run at speed v_1 and swim at speed v_2 . M, being a mathematician, runs towards a point P so as to reach S in the shortest possible time. Prove that the angles which M's path on land and in the water will make with the normal to the beach are related by

$$\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}.$$

Figure 1: For Question 2(i)

(9 marks)

- (ii) (a) For any symplectic form ω on \mathbb{R}^{2n} , define the *skew* W^{σ} of a vector subspace W of \mathbb{R}^{2n} . (2 marks)
 - (b) Using now the standard symplectic form Ω on \mathbb{R}^{2n} , prove that

$$\dim W^{\sigma} = 2n - \dim W.$$

You may use, if you wish, the Gram-Schmidt Theorem: for any \mathbb{R}^d and any vector subspace W of \mathbb{R}^d , there is an orthogonal basis of W. (11 marks)

(c) Hence, or otherwise, prove that if W is a k-dimensional vector subspace of \mathbb{R}^{2n} such that $\Omega(X,Y)=0$ for all $X,Y\in W$, then $k\leqslant n$.

(3 marks)

- 3 (i) Denote by $\widetilde{\mathscr{L}}$ the set of all oriented lines in \mathbb{R}^2 . Let U(1) denote the unit circle, centre the origin, and write elements of U(1) as unit complex numbers $e^{i\theta}$.
 - (a) Define, using sketch diagrams if you wish, a bijective correspondence between $\widetilde{\mathscr{L}}$ and the product set $U(1) \times \mathbb{R}$. (8 marks)
 - (b) In terms of your correspondence in (a), find the subsets of $U(1) \times \mathbb{R}$ which correspond to
 - (α) the set of lines which intersect U(1) in two distinct points;
 - (β) the set of lines which do not intersect U(1);
 - (γ) the set of lines which are tangent to U(1). (4 marks)
 - (ii) Consider the optical system shown in Figure 2. The indexes of refraction are n_1 and n_2 as shown, and $n_2 > n_1$. The boundary curves are parabolas given by $z = z_1 + \frac{1}{2}k_1q^2$ and $z = z_2 + \frac{1}{2}k_2q^2$, where $k_1 < 0$ and $k_2 > 0$ as shown
 - (a) Write down the matrices which correspond to refraction at each of the parabolic boundaries, making the usual assumptions of Gaussian optics. Specify the signs of the lower-left entries in each matrix.

(4 marks)

- (b) Calculate the matrix for the optical system of Figure 2. (4 marks)
- (c) Consider incoming horizontal rays. Show that there is no value of L for which all the outgoing rays are horizontal. (5 marks)

Figure 2: For Question 3(i).

- 4 In this question each \mathbb{R}^{2n} has the standard symplectic form Ω .
 - (a) Let W be an n-dimensional subspace of \mathbb{R}^{2n} . Take a basis of W and write the elements as the columns of a $n \times 2n$ matrix which we write in block form as

$$\begin{bmatrix} M \\ N \end{bmatrix}$$

where M and N are $n \times n$ matrices. Prove that W is Lagrangian if and only if $M^{\mathsf{T}}N$ is symmetric. (4 marks)

- (b) Let $L \subseteq \mathbb{R}^{2n}$ be a Lagrangian subspace of \mathbb{R}^{2n} . Show that it is transverse to both $\mathbb{R}^n \times 0$ and $0 \times \mathbb{R}^n$ if and only if it has a representation as in (a) of the form $\begin{bmatrix} M \\ I \end{bmatrix}$ with M invertible. (10 marks)
- (c) Let L and L' be Lagrangian subspaces which are both transversal to $\mathbb{R}^n \times 0$ and $0 \times \mathbb{R}^n$. State the theorem which gives criteria for the existence of $S \in Sp(2n)$ such that $S(\mathbb{R}^n \times 0) = \mathbb{R}^n \times 0$, $S(0 \times \mathbb{R}^n) = 0 \times \mathbb{R}^n$, and S(L) = L'. (3 marks)
- (d) Let

$$L = \text{span}\{(15, -6, 11, 2, 1, 0), (-11, 6, -11, -1, 2, 1), (-6, 5, -9, 0, 3, 1)\}.$$

Show that L is Lagrangian in (\mathbb{R}^6, Ω) and that it is transverse to both $\mathbb{R}^3 \times 0$ and $0 \times \mathbb{R}^3$. Represent L in the form

$$\begin{bmatrix} M \\ I \end{bmatrix}$$

as in (b) and determine the signature of M. (8 marks)

- The Local Diffeomorphism Theorem states that if U and V are open sets in \mathbb{R}^d and $\varphi \colon U \to V$ is a smooth map for which $\det D(\varphi)(Z_0) \neq 0$ for some $Z_0 \in U$, then there is an open set $U_1 \subseteq U$ with $Z_0 \in U_1$ and an open set $V_1 \subseteq V$ with $\varphi(Z_0) \in V_1$, such that the restriction $\varphi \colon U_1 \to V_1$ is a diffeomorphism.
 - (a) Consider a smooth function z = F(x, y) defined on an open set $U \subseteq \mathbb{R}^2$. Assume that $\frac{\partial F}{\partial y} \neq 0$ at a particular point (x_0, y_0) . Using the Local Diffeomorphism Theorem show that there is a smooth function H(x, z) such that

$$F(x, H(x, z)) = z$$
, and $H(x, F(x, y)) = y$.

(You need not specify any properties of the domain of H.)

Show that

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial H}{\partial x} = 0, \qquad \frac{\partial F}{\partial y} \frac{\partial H}{\partial z} = 1,$$

and

$$\frac{\partial H}{\partial x} + \frac{\partial F}{\partial x} \frac{\partial H}{\partial z} = 0.$$

(11 marks)

(b) Let $\Gamma(q, q')$ be a smooth function defined on an open set $U \subseteq \mathbb{R}^2$. Write

$$H = \frac{\partial \Gamma}{\partial q}, \qquad K = \frac{\partial \Gamma}{\partial q'}.$$

Assume that $\frac{\partial H}{\partial q'} \neq 0$ throughout U. Writing p = H(q, q'), (a) applies and shows that there is a smooth function F(q, p) such that

$$H(q, F(q, p)) = p.$$

Define G(q, p) = -K(q, F(q, p)) and show that

$$\varphi(q,p) = (F(q,p),G(q,p))$$

is a symplectomorphism.

(8 marks)

(c) Let a > 0 be a constant. Consider

$$\Gamma(q, q') = q \cos^{-1} \left(\frac{q'}{a\sqrt{2q}}\right) - \frac{q'}{a\sqrt{2}}\sqrt{q - \frac{q'^2}{2a^2}}$$

on the open set $U = \{(q, p) \mid q > 0\}$, with \cos^{-1} taking values in the interval $(0, \pi)$.

Determine φ as in (b), simplifying your answer as much as possible.

(6 marks)

End of Question Paper