INTERPLAY BETWEEN C^* AND VON NEUMANN ALGEBRAS

Stuart White

University of Glasgow

26 March 2013, British Mathematical Colloquium, University of Sheffield.
C^* and von Neumann algebras

<table>
<thead>
<tr>
<th>C^*-algebras</th>
<th>von Neuman algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Banach algebra A with an involution $*$</td>
<td>- Weak operator closed $*$-subalgebra $M \subseteq B(H)$</td>
</tr>
<tr>
<td>- satisfying the C^*-identity $|x^*x| = |x|^2$ for all $x \in A.$</td>
<td>- Weak operator topology: $x_i \to x \Leftrightarrow \langle (x_i - x)\xi, \eta \rangle \to 0$ for all $\xi, \eta \in H$</td>
</tr>
<tr>
<td>- Norm closed $*$-subalgebra $A \subseteq B(H)$</td>
<td>- C^*-algebra M which is isometrically the dual space of some Banach space.</td>
</tr>
<tr>
<td>Abelian C^*-algebras of form $C_0(X)$ for X locally compact</td>
<td>Abelian vNas of form $L^\infty(X, \mu)$ for some measure space (X, μ).</td>
</tr>
</tbody>
</table>
C* and von Neumann Algebras

<table>
<thead>
<tr>
<th>C*-algebras</th>
<th>von Neuman algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Banach algebra A</td>
<td>- Weak operator closed *-subalgebra $M \subseteq \mathcal{B}(\mathcal{H})$</td>
</tr>
<tr>
<td>- with an involution $*$</td>
<td>- Weak operator topology: $x_i \to x \iff \langle (x_i - x)\xi, \eta \rangle \to 0$ for all $\xi, \eta \in \mathcal{H}$</td>
</tr>
<tr>
<td>- satisfying the $C^$-identity $|x^ x| = |x|^2$ for all $x \in A.$</td>
<td></td>
</tr>
<tr>
<td>- Norm closed *-subalgebra $A \subseteq \mathcal{B}(\mathcal{H})$</td>
<td>- C^*-algebra M which is isometrically the dual space of some Banach space.</td>
</tr>
</tbody>
</table>

Abelian C^*-algebras of form $C_0(X)$ for X locally compact Hff Abelian vNas of form $L^\infty(X, \mu)$ for some measure space (X, μ).
C* and von Neumann Algebras

C*-algebras
- Banach algebra \(A \)
- with an involution \(*\)
- satisfying the C*-identity
 \[\|x^* x\| = \|x\|^2 \] for all \(x \in A \).
- Norm closed \(*\)-subalgebra \(A \subseteq \mathcal{B}(\mathcal{H}) \)

von Neumann Algebras
- Weak operator closed \(*\)-subalgebra \(M \subseteq \mathcal{B}(\mathcal{H}) \)
- Weak operator topology:
 \[x_i \to x \iff \langle (x_i - x)\xi, \eta \rangle \to 0 \]
 for all \(\xi, \eta \in \mathcal{H} \)
- \(C^* \)-algebra \(M \) which is isometrically the dual space of some Banach space.

Abelian C*-algebras of form \(C_0(X) \) for \(X \) locally compact
Abelian vNas of form \(L^\infty(X, \mu) \) for some measure space \((X, \mu)\).
<table>
<thead>
<tr>
<th>C^*-algebras</th>
<th>von Neumann algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Banach algebra A</td>
<td>- Weak operator closed *-subalgebra $M \subseteq \mathcal{B}(\mathcal{H})$</td>
</tr>
<tr>
<td>- with an involution *</td>
<td>- Weak operator topology: $x_i \to x \iff \langle (x_i - x)\xi, \eta \rangle \to 0$ for all $\xi, \eta \in \mathcal{H}$</td>
</tr>
<tr>
<td>- satisfying the C^*-identity $|x^*x| = |x|^2$ for all $x \in A.$</td>
<td></td>
</tr>
<tr>
<td>- Norm closed *-subalgebra $A \subseteq \mathcal{B}(\mathcal{H})$</td>
<td>- C^*-algebra M which is isometrically the dual space of some Banach space.</td>
</tr>
</tbody>
</table>

Abelian C^*-algebras of form $C_0(X)$ for X locally compact Hff

Abelian vNas of form $L^\infty(X, \mu)$ for some measure space (X, μ).
C* and von Neumann Algebras

<table>
<thead>
<tr>
<th>C*-algebras</th>
<th>von Neumann Algebras</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Banach algebra A with an involution $*$</td>
<td></td>
</tr>
<tr>
<td>• satisfying the C*-identity $|x^* x| = |x|^2$ for all $x \in A.$</td>
<td>• Weak operator closed *-subalgebra $M \subseteq B(\mathcal{H})$</td>
</tr>
<tr>
<td>• Norm closed *-subalgebra $A \subseteq B(\mathcal{H})$</td>
<td>• Weak operator topology: $x_i \to x \iff \langle (x_i - x)\xi, \eta \rangle \to 0$ for all $\xi, \eta \in \mathcal{H}$</td>
</tr>
<tr>
<td>Abelian C*-algebras of form $C_0(X)$ for X locally compact Hff</td>
<td>Abelian vNas of form $L^\infty(X, \mu)$ for some measure space $(X, \mu).$</td>
</tr>
</tbody>
</table>
Examples

- $M_n, \mathcal{B}(\mathcal{H})$;
- $C_0(X) \subset \mathcal{B}(L^2(X)), L^\infty(X) \subset \mathcal{B}(L^2(X))$;
- G discrete group \rightarrow group C^* and von Neumann algebras;

$\mathcal{H} = \ell^2(G)$, basis $\{\delta_g : g \in G\}$. Define unitaries $\lambda_g : \mathcal{H} \rightarrow \mathcal{H}$ by $\lambda_g(\delta_h) = \delta_{gh}$;

$C^*_r(G) = \text{Span}\{\lambda_g : g \in G\}^\|; LG = \text{Span}\{\lambda_g : g \in G\}^\text{wot}$.

- $\alpha : G \curvearrowright X$ Dynamical system $\rightarrow C(X) \rtimes_r G, L^\infty(X) \rtimes G$.

- $C(X) \rtimes_r G$ is a C^*-algebra generated by $C(X)$ and copy of G;
- Unitaries $(\lambda_g)_{g \in G}$ with $\lambda_{gh} = \lambda_g \lambda_h$, $\lambda_g f \lambda_g^* = f \circ \alpha^{-1}_g$ for $g, h \in G, f \in C(X)$.

How much information about G or $G \curvearrowright X$ is captured by their operator algebras?
Examples

- $M_n, \mathcal{B}(\mathcal{H})$;
- $C_0(X) \subset \mathcal{B}(L^2(X)), L^\infty(X) \subset \mathcal{B}(L^2(X))$;
- G discrete group \leadsto group C^* and von Neumann algebras;

\[\mathcal{H} = \ell^2(G), \text{basis } \{\delta_g : g \in G\}. \text{ Define unitaries } \lambda_g : \mathcal{H} \to \mathcal{H} \text{ by } \lambda_g(\delta_h) = \delta_{gh}; \]

\[C^*_r(G) = \operatorname{Span}\{\lambda_g : g \in G\}^\|; LG = \operatorname{Span}\{\lambda_g : g \in G\}^{\text{wot}}. \]

- $\alpha : G \curvearrowright X$ Dynamical system $\leadsto C(X) \rtimes_r G, L^\infty(X) \rtimes G$.

- $C(X) \rtimes_r G$ is a C^*-algebra generated by $C(X)$ and copy of G;
- Unitaries $(\lambda_g)_{g \in G}$ with $\lambda_{gh} = \lambda_g \lambda_h$, $\lambda_g f \lambda^*_g = f \circ \alpha^{-1}_g$ for $g, h \in G$, $f \in C(X)$.

How much information about G or $G \curvearrowright X$ is captured by their operator algebras?
Another example

- Consider $M_2 \hookrightarrow M_4 \cong M_2 \otimes M_2; x \mapsto x \otimes 1$.
- This preserves the normalised trace on M_2 and M_4. Carry on and form

$$M_2 \hookrightarrow M_2 \otimes M_2 \hookrightarrow M_2^\otimes 3 \hookrightarrow \ldots$$

to obtain direct limit *-algebra $\bigotimes_{n=1}^\infty M_2$.
- Perform GNS construction for canonical trace τ and take the weak operator closure — obtain hyperfinite II_1 factor R.
- Could also close in the norm topology to get the CAR-algebra M_{2^∞}.
Another example

- Consider $M_2 \hookrightarrow M_4 \cong M_2 \otimes M_2; x \mapsto x \otimes 1$.
- This preserves the normalised trace on M_2 and M_4. Carry on and form
 \[
 M_2 \hookrightarrow M_2 \otimes M_2 \hookrightarrow M_2 \otimes^3 \hookrightarrow \ldots
 \]
 to obtain direct limit *-algebra $\bigotimes_{n=1}^{\infty} M_2$.
- Perform GNS construction for canonical trace τ and take the weak operator closure — obtain hyperfinite II$_1$ factor R.
- Could also close in the norm topology to get the CAR-algebra M_2^{∞}.
Consider $M_2 \hookrightarrow M_4 \cong M_2 \otimes M_2; x \mapsto x \otimes 1$.

This preserves the normalised trace on M_2 and M_4. Carry on and form

$$M_2 \hookrightarrow M_2 \otimes M_2 \hookrightarrow M_2 \otimes^3 \hookrightarrow \cdots$$

to obtain direct limit \ast-algebra $\bigotimes_{n=1}^{\infty} M_2$.

Perform GNS construction for canonical trace τ and take the weak operator closure — obtain hyperfinite II$_1$ factor R.

Could also close in the norm topology to get the CAR-algebra $M_{2\infty}$.

Important consequence

$$R \cong R \overline{\otimes} R$$
Definition

A factor is a von Neumann algebra M with trivial centre: $Z(M) = \mathbb{C}1$.

- "Every" vNa can be written as a "direct integral" of factors.
- Murray and von Neumann classified factors into types.

Definition

A factor M is type II_1 if:

- it is infinite dimensional;
- \exists tracial state $\tau: M \to \mathbb{C}1$, i.e. $\tau(xy) = \tau(yx), \forall x, y \in M$.

- R;
- LG for countable discrete G with $|\{hgh^{-1} : h \in G\}| = \infty$ for $g \neq e$;
- $L(X) \rtimes G$ for $G \curvearrowleft (X, \mu)$ is free, ergodic and probability measure preserving.
Definition (Murray and von Neumann)

A vNa M is **hyperfinite** if every finite subset of M can be arbitrarily approximated arbitrarily in the weak*-topology by a finite dimensional subalgebra of M.

- Separably acting hyperfinite vnas arise are inductive limits of finite dimensional vnas.

Theorem (Murray and von Neumann)

There is a unique (separably acting) hyperfinite II_1 factor.
Given two operator algebras $A, B \subseteq \mathcal{B}(\mathcal{H})$, write $d(A, B)$ for the Hausdorff distance between the unit balls of A and B in the operator norm.

- For a unitary u, $d(A, uAu^*) \leq 2\|u - 1_{\mathcal{H}}\|$.

Theorem (Christensen, Johnson, Raeburn-Taylor ’77)

Let $M, N \subseteq \mathcal{B}(\mathcal{H})$ be vNas with M hyperfinite.

$$d(M, N) < 1/101 \implies \exists \text{ unitary } u \in W^*(M \cup N) \text{ s.t. } uMu^* = N$$

and $\|u - 1_{\mathcal{H}}\| \leq 150d(M, N)$.

Idea

- Establish dimension independent perturbation results for near containments of finite dimensional algebras.

- i.e. $\forall \varepsilon > 0, \exists \delta > 0$ such that if F is finite dim, $F \subseteq_{\delta} N$, then \exists unitary $u \in W^*(F, N)$ with $uFu^* \subseteq N$ and $\|u - 1_{\mathcal{H}}\| < \varepsilon$.
Given two operator algebras $A, B \subset \mathcal{B} (\mathcal{H})$, write $d(A, B)$ for the Hausdorff distance between the unit balls of A and B in the operator norm.

- For a unitary u, $d(A, uAu^*) \leq 2\|u - 1_\mathcal{H}\|$.

Theorem (Christensen, Johnson, Raeburn-Taylor ’77)

Let $M, N \subset \mathcal{B} (\mathcal{H})$ be vNas with M hyperfinite.

\[
\begin{align*}
d(M, N) < 1/101 & \iff \exists \text{ unitary } u \in W^*(M \cup N) \text{ s.t. } uMu^* = N \\
& \text{ and } \|u - 1_\mathcal{H}\| \leq 150d(M, N).
\end{align*}
\]

Idea

- Establish dimension independent perturbation results for near containments of finite dimensional algebras.

- i.e. $\forall \varepsilon > 0$, $\exists \delta > 0$ such that if F is finite dim, $F \subset_\delta N$, then \exists unitary $u \in W^*(F, N)$ with $uFu^* \subseteq N$ and $\|u - 1_\mathcal{H}\| < \varepsilon$.
Definition

C*-algebra A is **AF** if every finite subset of A can be arbitrarily approximated in norm by finite dimensional subalgebras of A.

- Separable AF algebras are inductive limits of finite dimensional algebras.
- eg $M_{2\infty}$. Changing matrix sizes matters: $M_{3\infty} \not\cong M_{2\infty}$.

Classification — Elliott

Separable AF-algebras are classified by K_0.

Theorem (Christensen 80)

Let $A, B \subset B(\mathcal{H})$ be C*-algebras, with A separable and AF. If $d(A, B) < 10^{-9}$, then there exists a unitary $u \in W^*(A, B)$ with $uAu^* = B$.

- Don’t get $\|u - 1_\mathcal{H}\|$ small, in terms of $d(A, B)$ but can control $\text{Ad}(u) - \iota_A$ in the point-norm topology.
Definition

C*-algebra A is AF if every finite subset of A can be arbitrarily approximated in norm by finite dimensional subalgebras of A.

- Separable AF algebras are inductive limits of finite dimensional algebras.
- eg M_{2^∞}. Changing matrix sizes matters: $M_{3^\infty} \not\cong M_{2^\infty}$.

Classification — Elliott

Separable AF-algebras are classified by K_0.

Theorem (Christensen 80)

Let $A, B \subseteq B(H)$ be C*-algebras, with A separable and AF. If $d(A, B) < 10^{-9}$, then there exists a unitary $u \in W^*(A, B)$ with $uAu^* = B$.

- Don’t get $\|u - 1_H\|$ small, in terms of $d(A, B)$ but can control $\text{Ad}(u) - \iota_A$ in the point-norm topology.
Definition

C*-algebra \(A \) is **AF** if every finite subset of \(A \) can be arbitrarily approximated in norm by finite dimensional subalgebras of \(A \).

- Separable AF algebras are inductive limits of finite dimensional algebras.
- eg \(M_{2\infty} \). Changing matrix sizes matters: \(M_{3\infty} \not\cong M_{2\infty} \).

Classification — Elliott

Separable AF-algebras are classified by \(K_0 \).

Theorem (Christensen 80)

Let \(A, B \subset \mathcal{B}(\mathcal{H}) \) be C*-algebras, with \(A \) separable and AF. If \(d(A, B) < 10^{-9} \), then there exists a unitary \(u \in W^*(A, B) \) with \(uAu^* = B \).

- Don’t get \(\|u - 1_{\mathcal{H}}\| \) small, in terms of \(d(A, B) \) but can control \(\text{Ad}(u) - \iota_A \) in the point-norm topology.
Theorem (Connes 75)

Let M be a (separably acting) von Neumann algebra. Then (amongst others) the following are equivalent.

1. M is injective (abstract categorical property)
2. M is semidiscrete (finite dimensional approximation property)
3. M is hyperfinite (inductive limit structure)

Call these factors amenable.

- A linear map $\phi : A \to B$ between C^*-algebras is positive if $\phi(x) \geq 0$ when $x \geq 0$.
- ϕ is completely positive if each $\phi^{(n)} : M_n(A) \to M_n(B)$ is positive.
- M is semidiscrete if id_M can be approximated in the point weak* topology by completely positive contractions (cpc) $M \to F \to M$, with F finite dimensional.
Amenable von Neumann algebras

Theorem (Connes 75)

Let M be a (separably acting) von Neumann algebra. Then (amongst others) the following are equivalent.

1. M is injective (abstract categorical property)
2. M is semidiscrete (finite dimensional approximation property)
3. M is hyperfinite (inductive limit structure)

Call these factors amenable.

A linear map $\phi : A \to B$ between C^*-algebras is positive if $\phi(x) \geq 0$ when $x \geq 0$.

ϕ is completely positive if each $\phi^{(n)} : M_n(A) \to M_n(B)$ is positive.

M is semidiscrete if id_M can be approximated in the point weak* topology by completely positive contractions (cpc) $M \to F \to M$, with F finite dimensional.
Amenable von Neumann algebras

Theorem (Connes 75)

Let M be a (separably acting) von Neumann algebra. Then (amongst others) the following are equivalent.

1. M is injective (abstract categorical property)
2. M is semidiscrete (finite dimensional approximation property)
3. M is hyperfinite (inductive limit structure)

Call these factors amenable.

A linear map $\phi : A \rightarrow B$ between C^*-algebras is positive if $\phi(x) \geq 0$ when $x \geq 0$.

ϕ is completely positive if each $\phi^{(n)} : M_n(A) \rightarrow M_n(B)$ is positive.

M is semidiscrete if id_M can be approximated in the point weak* topology by completely positive contractions (cpc) $M \rightarrow F \rightarrow M$, with F finite dimensional.
MORE ON CONNES THEOREM

Corollary (Connes)

There is a unique (separably acting) injective II$_1$ factor.

- Connes didn’t classify injective II$_1$ factors: he showed the abstract property of injectivity implies the existence of an inductive limit structure.
- Factors with this inductive limit structure had already been classified by Murray and von Neumann.

Important Step in Connes’ Proof

First show that an injective II$_1$ factor M tensorially absorbs the hyperfinite II$_1$ factor, i.e. $M \cong M \bar{\otimes} R$.

- II$_1$ factors M with $M \cong M \bar{\otimes} R$ where characterised by McDuff.
- $M \cong M \bar{\otimes} R$ iff the central sequence algebra $M^\omega \cap M'$ is non-abelian iff $M_k \hookrightarrow M^\omega \cap M'$ for all k.
Corollary (Connes)

There is a unique (separably acting) injective II\(_1\) factor.

- Connes didn’t classify injective II\(_1\) factors: he showed the abstract property of injectivity implies the existence of an inductive limit structure.
- Factors with this inductive limit structure had already been classified by Murray and von Neumann.

Important Step in Connes’ Proof

First show that an injective II\(_1\) factor \(M\) tensorially absorbs the hyperfinite II\(_1\) factor, i.e. \(M \cong M \bar{\otimes} R\).

- II\(_1\) factors \(M\) with \(M \cong M \bar{\otimes} R\) where characterised by McDuff.
- \(M \cong M \bar{\otimes} R\) iff the central sequence algebra \(M^\omega \cap M'\) is non-abelian iff \(M_k \hookrightarrow M^\omega \cap M'\) for all \(k\).
Definition

A C*-algebra A is **nuclear** if for every C*-algebra B there is only one way of completing the algebraic tensor product $A \odot B$ to obtain a C*-algebra.

Definition

A C*-algebra A has the **completely positive factorisation property** if $\text{id}_A : A \to A$ can be approximated by completely positive contractions $A \to F \to A$ in the point norm topology.

Theorem (Connes, (Kirchberg, Choi-Effros))

Let A be a C*-algebra. TFAE:

1. A is nuclear;
2. A^{**} is semidiscrete;
3. A has the completely positive approximation property.
Amenable C^*-algebras

Definition

A C^*-algebra A is **nuclear** if for every C^*-algebra B there is only one way of completing the algebraic tensor product $A \odot B$ to obtain a C^*-algebra.

Definition

A C^*-algebra A has the **completely positive factorisation property** if $\text{id}_A : A \to A$ can be approximated by completely positive contractions $A \to F \to A$ in the point norm topology.

Theorem (Connes, (Kirchberg, Choi-Effros))

Let A be a C^*-algebra. TFAE:

1. A is nuclear;
2. A^{**} is semidiscrete;
3. A has the completely positive approximation property.
Definition

A C^*-algebra A is **nuclear** if for every C^*-algebra B there is only one way of completing the algebraic tensor product $A \odot B$ to obtain a C^*-algebra.

Definition

A C^*-algebra A has the **completely positive factorisation property** if $id_A : A \to A$ can be approximated by completely positive contractions $A \to F \to A$ in the point norm topology.

Theorem (Connes, (Kirchberg, Choi-Effros))

Let A be a C^*-algebra. TFAE:

1. A is nuclear;
2. A^{**} is semidiscrete;
3. A has the completely positive approximation property.
\[A^{**} \text{ semidiscrete} \quad \text{Hahn Banach argument} \quad A \text{ has cpap} \]

\[A^{**} \text{ semidiscrete} \quad \text{currently requires Connes} \quad A \text{ has cpap} \]

- Due to Connes theorem, can witness semidiscreteness of \(A^{**} \) with maps \(A^{**} \rightarrow F \xrightarrow{\phi} A^{**} \) with \(\phi \) a *-homomorphism.

Theorem (Hirshberg, Kirchberg, W.)

Let \(A \) be a nuclear \(C^* \)-algebra. Then \(\text{id}_A : A \rightarrow A \) can be approximated by cpc maps \(A \rightarrow F \xrightarrow{\phi} A \) where \(\phi \) is a convex combination of cpc order zero maps.

- \(A \) could be projectionless: no *-hms \(F \rightarrow A \).
- Order zero maps, next best thing.
- \(\phi : F \rightarrow A \) is order zero if \(\phi \) preserves orthogonality, i.e. \(e, f \geq 0, ef = 0 \implies \phi(e)\phi(f) = 0 \).
- All cpc order zero maps \(\phi \) obtained by compressing *-homomorphism by a positive element which commutes with \(\phi(A) \).
\[A^{**} \text{ semidiscrete} \quad \Rightarrow \quad A \text{ has cpap} \]

\[A^{**} \text{ semidiscrete} \quad \Leftarrow \quad \text{currently requires Connes} \quad A \text{ has cpap} \]

- Due to Connes theorem, can witness semidiscreteness of \(A^{**} \) with maps \(A^{**} \to F \xrightarrow{\phi} A^{**} \) with \(\phi \) a *-homomorphism.

Theorem (Hirshberg, Kirchberg, W.)

Let \(A \) be a nuclear \(C^* \)-algebra. Then \(\text{id}_A : A \to A \) can be approximated by cpc maps \(A \to F \xrightarrow{\phi} A \) where \(\phi \) is a convex combination of cpc order zero maps.

- \(A \) could be projectionless: no *-homs \(F \to A \).
- Order zero maps, next best thing.
- \(\phi : F \to A \) is order zero if \(\phi \) preserves orthogonality, i.e.
 \[e, f \geq 0, ef = 0 \implies \phi(e)\phi(f) = 0. \]
- All cpc order zero maps \(\phi \) obtained by compressing *-homomorphism by a positive element which commutes with \(\phi(A) \).
\(A^{**} \text{ semidiscrete} \quad \iff \quad A \text{ has cpap} \)

Due to Connes theorem, can witness semidiscreteness of \(A^{**} \) with maps \(A^{**} \to F \xrightarrow{\phi} A^{**} \) with \(\phi \) a \(* \)-homomorphism.

Theorem (Hirshberg, Kirchberg, W.)

Let \(A \) be a nuclear \(C^* \)-algebra. Then \(\text{id}_A : A \to A \) can be approximated by cpc maps \(A \to F \xrightarrow{\phi} A \) where \(\phi \) is a convex combination of cpc order zero maps.

- \(A \) could be projectionless: no \(* \)-hms \(F \to A \).
- Order zero maps, next best thing.
- \(\phi : F \to A \) is order zero if \(\phi \) preserves orthogonality, i.e.
 \(e, f \geq 0, ef = 0 \iff \phi(e)\phi(f) = 0. \)
- All cpc order zero maps \(\phi \) obtained by compressing \(* \)-homomorphism by a positive element which commutes with \(\phi(A) \).
Theorem (Hirshberg, Kirchberg, W. 2011)

Let A be a nuclear C^*-algebra. Then $\text{id}_A : A \to A$ can be approximated by cpc maps $A \to F \xrightarrow{\phi} A$ where ϕ is a convex combination of cpc order zero maps.

Corollary (HKW, building on results of Christensen, Sinclair, Smith, W, Winter)

Let A be separable and nuclear, and suppose that $A \subset_{\gamma} B$ for $\gamma < 1/210000$. Then $A \hookrightarrow B$.

- If in addition $d(A, B)$ small, then \exists unitary $u \in W^*(A, B)$ with $uAu^* = B$.

Definition (Winter, Zacharias, 2009)

A C^*-algebra has nuclear dimension at most n if one can find cp factorisations $A \xrightarrow{\text{contractive}} F \xrightarrow{\phi} A$ such that ϕ is a sum of at most $n + 1$ cpc order zero maps.

- $\dim_{\text{nuc}}(C(X)) = \dim(X)$; $\dim_{\text{nuc}}(A) = 0 \iff A$ is AF.
Theorem (Hirshberg, Kirchberg, W. 2011)

Let A be a nuclear C^*-algebra. Then $\text{id}_A : A \to A$ can be approximated by cpc maps $A \to F \overset{\phi}{\to} A$ where ϕ is a convex combination of cpc order zero maps.

Corollary (HKW, building on results of Christensen, Sinclair, Smith, W, Winter)

Let A be separable and nuclear, and suppose that $A \subset_\gamma B$ for $\gamma < 1/210000$. Then $A \hookrightarrow B$.

- If in addition $d(A, B)$ small, then \exists unitary $u \in W^*(A, B)$ with $uAu^* = B$.

Definition (Winter, Zacharias, 2009)

A C^*-algebra has nuclear dimension at most n if one can find cp factorisations $A \overset{\text{contractive}}{\to} F \overset{\phi}{\to} A$ such that ϕ is a sum of at most $n + 1$ cpc order zero maps.

- $\text{dim}_{\text{nuc}}(C(X)) = \text{dim}(X)$; $\text{dim}_{\text{nuc}}(A) = 0 \iff A$ is AF.
Theorem (Hirshberg, Kirchberg, W. 2011)

Let A be a nuclear C^*-algebra. Then $\text{id}_A : A \to A$ can be approximated by cpc maps $A \to F \xrightarrow{\phi} A$ where ϕ is a convex combination of cpc order zero maps.

Corollary (HKW, building on results of Christensen, Sinclair, Smith, W, Winter)

Let A be separable and nuclear, and suppose that $A \subset_\gamma B$ for $\gamma < 1/210000$. Then $A \hookrightarrow B$.

- If in addition $d(A, B)$ small, then \exists unitary $u \in W^*(A, B)$ with $uAu^* = B$.

Definition (Winter, Zacharias, 2009)

A C^*-algebra has nuclear dimension at most n if one can find cp factorisations $A \xrightarrow{\text{contractive}} F \xrightarrow{\phi} A$ such that ϕ is a sum of at most $n + 1$ cpc order zero maps.

- $\dim_{\text{nuc}}(C(X)) = \dim(X)$; $\dim_{\text{nuc}}(A) = 0 \iff A$ is AF.
Classification of separably acting injective factors.

The analogous class of C^*-algebras are the simple, separable
and unital C^*-algebras.

Connes, Haagerup

Elliott’s classification programme: Initial aim

Classify all simple, separable, nuclear C^*-algebras A by
K-theory: data about homotopy equivalence classes of
projections and unitaries in matrices over A
Connes, Haagerup

Classification of separably acting injective factors.

The analogous class of C^*-algebras are the simple, separable and unital C^*-algebras.

Elliott’s classification programme: Initial aim

Classify all simple, separable, nuclear C^*-algebras A by K-theory: data about homotopy equivalence classes of projections and unitaries in matrices over A
Purely infinite algebras

Definition

A simple C^*-algebra A is **purely infinite** if for all $x \neq 0$ there exists $a, b \in A$ such that $1 = axb$.

- Very strong infiniteness condition. Implies that all non-zero projections are equivalent;
- Equivalently: every hereditary subalgebra has an infinite projection.
- e.g Cuntz algebras O_n — universal C^*-algebras generated by n isometries s_1, \ldots, s_n with $\sum_{i=1}^n s_is_i^* = 1$.

Theorem (Kirchberg, Kirchberg-Philips)

Purely infinite simple separable nuclear C^*-algebras (satisfying the UCT) are classified by K-theory.
Definition

A simple C^*-algebra A is purely infinite if for all $x \neq 0$ there exists $a, b \in A$ such that $1 = axb$.

- Very strong infiniteness condition. Implies that all non-zero projections are equivalent;
- Equivalently: every hereditary subalgebra has an infinite projection.
- e.g Cuntz algebras \mathcal{O}_n — universal C^*-algebras generated by n isometries s_1, \ldots, s_n with $\sum_{i=1}^{n} s_is_i^* = 1$.

Theorem (Kirchberg, Kirchberg-Philips)

Purely infinite simple separable nuclear C^-algebras (satisfying the UCT) are classified by K-theory.*
Theorem (Kirchberg)

Let A be simple, separable and nuclear. Then

$$A \text{ is purely infinite } \iff A \cong A \otimes \mathcal{O}_\infty.$$

Recall

To prove his theorem, Connes needed to show that an injective II_1 factor has $M \cong M \overline{\otimes} R$.

Theorem (Kirchberg)

Let A be simple, separable unital and nuclear. Then

$$\mathcal{O}_2 \cong A \otimes \mathcal{O}_2.$$

The tensorial absorption $\mathcal{O}_2 \cong \mathcal{O}_2 \otimes \mathcal{O}_2$ (due to Elliott) plays a significant role in this.
Oddly, in the C^*-setting the purely infinite case appears to be easier than the finite case.

Reasons

- Higher dimensional topological phenomena can occur in simple C^*-algebras.
- The condition of pure infiniteness prevents this: in a precise sense these algebras have low topological dimension.

- In the finite case, need traces as well as K-theory.
- In late 90’s Jiang-Su constructed \mathbb{Z}, an infinite dimensional C^*-algebra with the same Elliott data as the complex numbers.
- For “reasonable” A, A and $A \otimes \mathbb{Z}$ have same Elliott data.
- Rørdam, Toms used a Chern class obstruction of Villadsen to produce vast counter examples to Elliott’s conjecture.
Oddly, in the C^*-setting the purely infinite case appears to be easier than the finite case.

Reasons

- Higher dimensional topological phenoma can occur in simple C^*-algebras.
- The condition of pure infiniteness prevents this: in a precise sense these algebras have low topological dimension.

- In the finite case, need traces as well as K-theory.
- In late 90’s Jiang-Su constructed \mathcal{Z}, an infinite dimensional C^*-algebra with the same Elliott data as the complex numbers.
- For “reasonable” A, A and $A \otimes \mathcal{Z}$ have same Elliott data.
- Rørdam, Toms used a Chern class obstruction of Villadsen to produce vast counter examples to Elliott’s conjecture.
Oddly, in the C*-setting the purely infinite case appears to be easier than the finite case.

Reasons

- Higher dimensional topological phenomena can occur in simple C*-algebras.
- The condition of pure infiniteness prevents this: in a precise sense these algebras have low topological dimension.
- In the finite case, need traces as well as K-theory.
- In late 90’s Jiang-Su constructed \mathcal{Z}, an infinite dimensional C*-algebra with the same Elliott data as the complex numbers.
- For “reasonable” A, A and $A \otimes \mathcal{Z}$ have same Elliott data.
- Rørdam, Toms used a Chern class obstruction of Villadsen to produce vast counter examples to Elliott’s conjecture.
Establishing \mathcal{Z}-stability

We expect that simple, separable nuclear C^*-algebras should be classifiable when they absorb \mathcal{Z} tensorially.

Theorem (Winter 2010)

Let A be simple, separable unital and nuclear and have finite nuclear dimension. Then $A \cong A \otimes \mathcal{Z}$.

- Can view this as obtaining tensorial absorption from a topological property.
- Absorbing \mathcal{Z} gives room to manoeuvre in classification theorems.

Theorem (Toms, Winter 2009)

The class $\mathcal{C} = \{ C(X) \times \mathcal{Z} : X$ finite dimensional metrisable, $\mathcal{Z} \rightarrow X$ minimal, uniquely ergodic $\}$ is classified by K-theory.
We expect that simple, separable nuclear C^*-algebras should be classifiable when they absorb \mathcal{Z} tensorially.

Theorem (Winter 2010)

Let A be simple, separable unital and nuclear and have finite nuclear dimension. Then $A \cong A \otimes \mathcal{Z}$.

- Can view this as obtaining tensorial absorption from a topological property.
- Absorbing \mathcal{Z} gives room to manoeuvre in classification theorems.

Theorem (Toms, Winter 2009)

The class $\mathcal{C} = \{ C(X) \times \mathcal{Z} : X \text{ finite dimensional metrisable, } \mathcal{Z} \xhookrightarrow{} X \text{ minimal, uniquely ergodic} \}$ is classified by K-theory.
Further, \mathcal{Z}-stability is analogous to absorbing R in a very striking way. Recall that a II$_1$ factor M has $M \cong M \bar{\otimes} R$ if and only if $M_k \hookrightarrow M^\omega \cap M'$.

- For separable A, $A \cong A \bar{\otimes} \mathcal{Z}$ if and only if the central sequence algebra $A^\omega \cap A'$ is sufficiently non-commutative.
- For separable unital A, $A \cong A \bar{\otimes} \mathcal{Z}$ if and only if, for some $k \geq 2$, there exists a “large” cpc order zero map $\phi : M_k \rightarrow A^\omega \cap A'$.
- Losely, large means that $1_A - \phi(1_k)$ is dominated by $\phi(e_{11})$.
Further, \mathcal{Z}-stability is analogous to absorbing R in a very striking way. Recall that a II_1 factor M has $M \cong M \bar{\otimes} R$ if and only if $M_k \hookrightarrow M^\omega \cap M'$.

- For separable A, $A \cong A \bar{\otimes} \mathcal{Z}$ if and only if the central sequence algebra $A_\omega \cap A'$ is sufficiently non-commutative.
- For separable unital A, $A \cong A \bar{\otimes} \mathcal{Z}$ if and only if, for some $k \geq 2$, there exists a “large” cpc order zero map $\phi : M_k \to A^\omega \cap A'$.
- Losely, large means that $1_A - \phi(1_k)$ is dominated by $\phi(e_{11})$.
Further, \mathcal{Z}-stability is analogous to absorbing R in a very striking way. Recall that a II_1 factor M has $M \cong M \otimes R$ if and only if $M_k \hookrightarrow M^\omega \cap M'$.

- For separable A, $A \cong A \otimes \mathcal{Z}$ if and only if the central sequence algebra $A^\omega \cap A'$ is sufficiently non-commutative.
- For separable unital A, $A \cong A \otimes \mathcal{Z}$ if and only if, for some $k \geq 2$, there exists a “large” cpc order zero map $\phi : M_k \to A^\omega \cap A'$.
- Loosely, large means that $1_A - \phi(1_k)$ is dominated by $\phi(e_{11})$.
Tensorial absorption from abstract properties

Goal (part of a conjecture of Toms and Winter)

Let A be simple unital separable and nuclear. Then

$$A \text{ has strict comparison } \iff A \cong A \otimes \mathcal{Z}.$$

- \iff is Rørdam.
- Strict comparison is a condition which says that we can determine the order on positive elements by looking at their ranks. The analogous condition holds for all II_1 factors.
- This would be a vast generalisation of Kirchberg’s O_{∞}-absorption theorem as when A is simple, separable and traceless Rørdam has shown:

$$A \cong A \otimes \mathcal{Z} \iff A \cong A \otimes O_{\infty}$$

A purely infinite $\iff A$ has strict comparison
Tensorial absorption from abstract properties

Goal (part of a conjecture of Toms and Winter)

Let A be simple unital separable and nuclear. Then

$$A \text{ has strict comparison } \iff A \cong A \otimes \mathcal{Z}. \quad \iff \text{ is Rørdam.}$$

- Strict comparison is a condition which says that we can determine the order on positive elements by looking at their ranks. The analogous condition holds for all II_1 factors.
- This would be a vast generalisation of Kirchberg’s O_∞-absorption theorem as when A is simple, separable and traceless Rørdam has shown:

$$A \cong A \otimes \mathcal{Z} \iff A \cong A \otimes O_\infty$$

A purely infinite $\iff A$ has strict comparson
Let A be simple unital separable and nuclear. Then

$$A \text{ has strict comparison } \iff A \cong A \otimes \mathcal{Z}.$$

\iff is Rørdam.

Strict comparison is a condition which says that we can determine the order on positive elements by looking at their ranks. The analogous condition holds for all II_1 factors.

This would be a vast generalisation of Kirchberg’s O_∞-absorption theorem as when A is simple, separable and traceless Rørdam has shown:

$$A \cong A \otimes \mathcal{Z} \iff A \cong A \otimes O_\infty$$

A purely infinite $\iff A$ has strict comparison
Current Status

Theorem (Kirchberg-Rørdam, Sato, Toms-W-Winter, building on Matui-Sato)

Let A be simple separable unital and nuclear and suppose that $T(A)$ is non-empty, and has a compact extreme boundary of finite covering dimension. Then

$$A \text{ has strict comparison } \iff A \cong A \otimes \mathbb{Z}.$$

Proofs use interplay between von Neumann and C^*-algebras directly:

- For each extreme trace τ, the weak closure M_τ of A in the GNS representation is an injective II_1 factor.
- By Connes, $M_\tau \cong M_\tau \overline{\otimes} R$ so have $M_k \hookrightarrow M_\tau^\omega \cap M'_\tau$.
- Can use the surjectivity of $A_\omega \cap A' \to M_\tau^\omega \cap M'_\tau$ to obtain order zero maps $M_k \to A_\omega \cap A'$ large wrt τ.
- The condition on $T(A)$ is used to glue these together to obtain one large order zero map $M_k \to A_\omega \cap A'$.