Whitney categories and the Tangle Hypothesis

Jon Woolf, University of Liverpool
(joint with Conor Smyth)

BMC, March 2013
Small categories ‘are’ presheaves on Δ — finite ordinals and order-preserving maps — with a sheaf-like property.
Small categories ‘are’ presheaves on Δ — finite ordinals and order-preserving maps — with a sheaf-like property.

The nerve of a category

The nerve $N : \text{Cat} \rightarrow PSh(\Delta)$ is fully faithful, with essential image those simplicial sets S satisfying the Segal condition

$$S_k \xrightarrow{\sim} S_1 \times_{S_0} \cdots \times_{S_0} S_1 \quad \forall \ k \in \mathbb{N}.$$

(We think of $[k]$ as a concatenation of directed intervals

```
•----• • • • ----•
```

rather than as a geometrical simplex.)
Small dagger categories ‘are’ presheaves on $D\Delta$ — finite ordinals and order-preserving or reversing maps — with a sheaf-like property.
Dagger categories (or categories with duals)

Small dagger categories ‘are’ presheaves on $D\Delta$ — finite ordinals and order-preserving or reversing maps — with a sheaf-like property.

The dagger nerve of a dagger category [Joy10]

The dagger nerve $DN: DCat \to PSh(D\Delta)$ is fully faithful, with essential image those dagger simplicial sets S satisfying the Segal condition

$$S_k \sim S_1 \times_{S_0} \cdots \times_{S_0} S_1 \quad \forall k \in \mathbb{N}.$$

(We think of $[k]$ as a concatenation of undirected intervals

```
|-------|-------|-------|-------|
```

rather than as a sequence of arrows.)
Remark

The above realisation of $[k]$ is a typical 1d stratified space. The idea of [SW11] is to define higher categories with duals by

\[
\Delta \xrightarrow{\sim} \text{category of higher dim stratified spaces} \\
\text{Segal condition} \xrightarrow{\sim} \text{sheaf-like condition for presheaves on above}
\]
Remark

The above realisation of $[k]$ is a typical 1d stratified space. The idea of [SW11] is to define higher categories with duals by

\[\text{D\Delta} \sim \text{category of higher dim stratified spaces} \]

\[\text{Segal condition} \sim \text{sheaf-like condition for presheaves on above} \]

Definition (Higher category with duals — preliminary version)

Presheaf on a (suitable) category of stratified spaces satisfying a (suitable) sheaf-like property.
Stratified spaces

Definition (Whitney stratified manifold)
Manifold with a locally-finite partition into disjoint locally-closed submanifolds \(\{ S_i \} \) (the strata) satisfying Whitney’s condition \(B \).

Examples
A real or complex projective analytic variety admits a Whitney stratification by subvarieties. A compact manifold can be stratified by the flow of Morse–Smale vector field.

Definition (Compact cellular stratified space)
Compact union of cellular strata in a Whitney stratified manifold.

Examples
Geometric simplex \(\Delta^n \subset \mathbb{R}^{n+1} \), \(S^n \), \(\mathbb{R}P^n \), \(\mathbb{C}P^n \), Grassmannians, . . .
Definition (Whitney stratified manifold)

Manifold with a locally-finite partition into disjoint locally-closed submanifolds \(\{ S_i \} \) (the strata) satisfying Whitney’s condition \(B \).

Examples

A real or complex projective analytic variety admits a Whitney stratification by subvarieties. A compact manifold can be stratified by the flow of Morse–Smale vector field.
Stratified spaces

Definition (Whitney stratified manifold)
Manifold with a locally-finite partition into disjoint locally-closed submanifolds \(\{ S_i \} \) (the strata) satisfying Whitney’s condition \(B \).

Examples
A real or complex projective analytic variety admits a Whitney stratification by subvarieties. A compact manifold can be stratified by the flow of Morse–Smale vector field.

Definition (Compact cellular stratified space)
Compact union of cellular strata in a Whitney stratified manifold.
Stratified spaces

Definition (Whitney stratified manifold)

Manifold with a locally-finite partition into disjoint locally-closed submanifolds \(\{S_i\} \) (the strata) satisfying Whitney’s condition \(B \).

Examples

A real or complex projective analytic variety admits a Whitney stratification by subvarieties. A compact manifold can be stratified by the flow of Morse–Smale vector field.

Definition (Compact cellular stratified space)

Compact union of cellular strata in a Whitney stratified manifold.

Examples

Geometric simplex \(\Delta_n \subset \mathbb{R}^{n+1}, S^n, \mathbb{R}P^n, \mathbb{C}P^n \), Grassmannians...
Stratified and prestratified maps

Definition (Stratified map)
Smooth $f: X \to Y$, where X, Y stratified spaces, such that
- $f^{-1} T$ is a union of strata for each stratum $T \subseteq Y$
- $f|_S: S \to T$ is a submersion for each $S \subseteq f^{-1} T$.

Definition (Prestratified map)
Smooth $f: X \to Y$ which becomes stratified after refining the stratification of X.

Example
Jon Woolf, University of Liverpool (joint with Conor Smyth)
Whitney categories and the Tangle Hypothesis
Definition (Stratified map)
Smooth $f: X \rightarrow Y$, where X, Y stratified spaces, such that
- $f^{-1}T$ is a union of strata for each stratum $T \subset Y$
- $f|_S: S \rightarrow T$ is a submersion for each $S \subset f^{-1}T$.

Definition (Prestratified map)
Smooth $f: X \rightarrow Y$ which becomes stratified after refining the stratification of X.
Definition (Stratified map)

Smooth $f: X \to Y$, where X, Y stratified spaces, such that
- $f^{-1}T$ is a union of strata for each stratum $T \subset Y$
- $f|_{S}: S \to T$ is a submersion for each $S \subset f^{-1}T$.

Definition (Prestratified map)

Smooth $f: X \to Y$ which becomes stratified after refining the stratification of X.

Example

![Diagram](https://via.placeholder.com/150)
Definition (Stratified map)

Smooth $f: X \to Y$, where X, Y stratified spaces, such that
- $f^{-1}T$ is a union of strata for each stratum $T \subset Y$
- $f|_S: S \to T$ is a submersion for each $S \subset f^{-1}T$.

Definition (Prestratified map)

Smooth $f: X \to Y$ which becomes stratified after refining the stratification of X.

Example
Whitney categories I

Definition (Categories of stratified spaces)

Objects are compact cellular stratified spaces of ambient dim n and respective morphisms are

$$\text{Str}_n : \text{germs of stratified maps}$$

Definition (Whitney n-category)

Presheaf on hPStr_n whose pullback along $\text{Str}_n / \text{Uni} \to \text{hPStr}_n$ is a sheaf. In particular

$$W(X) = \lim_{i \in S(X)} W(S_i)$$

where $S(X)$ is the poset of strata of X. Let $n\text{Whit}$ be the full subcategory of such presheaves.

Jon Woolf, University of Liverpool (joint with Conor Smyth)
Whitney categories and the Tangle Hypothesis
Definition (Categories of stratified spaces)

Objects are compact cellular stratified spaces of ambient dim n and respective morphisms are

- Str_n: germs of stratified maps
- PStr_n: germs of prestratified maps

Definition (Whitney n-category)

Presheaf on hPStr_n whose pullback along $\text{Str}_n/\text{PStr}_n \to \text{hPStr}_n$ is a sheaf. In particular $W(X) = \lim_{i \in S(X)} W(S_i)$ where $S(X)$ is the poset of strata of X. Let Whit_n be the full subcategory of such presheaves.

Jon Woolf, University of Liverpool (joint with Conor Smyth)

Whitney categories and the Tangle Hypothesis
Definition (Categories of stratified spaces)

Objects are compact cellular stratified spaces of ambient dim n and respective morphisms are

- Str_n: germs of stratified maps
- PStr_n: germs of prestratified maps
- hPStr_n: homotopy classes of germs of prestratified maps.
Definition (Categories of stratified spaces)

Objects are compact cellular stratified spaces of ambient dim n and respective morphisms are

\[\text{Str}_n : \text{germs of stratified maps} \]
\[\text{PStr}_n : \text{germs of prestratified maps} \]
\[\text{hPStr}_n : \text{homotopy classes of germs of prestratified maps} . \]

Definition (Whitney n-category)

Presheaf on hPStr$_n$ whose pullback along \(\text{Str}_n \hookrightarrow \text{PStr}_n \rightarrow \text{hPStr}_n \) is a sheaf. In particular

\[
W(X) = \lim_{i \in S(X)} W(\overline{S}_i)
\]

where \(S(X) \) is the poset of strata of \(X \). Let \(n\text{Whit} \) be the full subcategory of such presheaves.
Example (Sheaf condition \Rightarrow Segal condition)

$W(\ldots) = W(\bullet \bullet) \times_{W(\bullet)} \ldots \times_{W(\bullet)} W(\bullet \bullet)$
Example (Sheaf condition \Rightarrow Segal condition)

$W(\cdots) = W(\bullet) \times_{W(\bullet)} \cdots \times_{W(\bullet)} W(\bullet)$

Objects / morphisms

$X \leftrightarrow$ template for a pasting diagram, $W(X) \leftrightarrow$ set of pasting diagrams, or X-morphisms.
Example (Sheaf condition \Rightarrow Segal condition)

\[W(\cdots) = W(\bullet) \times_{W(\bullet)} \cdots \times_{W(\bullet)} W(\bullet) \]

Objects / morphisms

\(X \leftrightarrow \) template for a pasting diagram,
\(W(X) \leftrightarrow \) set of pasting diagrams, or \(X \)-morphisms.

Structure

Boundary:
Source/Target
Example (Sheaf condition \Rightarrow Segal condition)

$$W(\cdots) = W(\cdot) \times_{W(\cdot)} \cdots \times_{W(\cdot)} W(\cdot)$$

Objects / morphisms

$X \leftrightarrow$ template for a pasting diagram,

$W(X) \leftrightarrow$ set of pasting diagrams, or X-morphisms.

Structure

- Boundary
- Source/Target
- Subdivision
- Composition
Example (Sheaf condition \Rightarrow Segal condition)

\[W(\cdots) = W(\bullet) \times_{W(\bullet)} \cdots \times_{W(\bullet)} W(\bullet) \]

Objects / morphisms

\[X \leftrightarrow \text{template for a pasting diagram}, \]
\[W(X) \leftrightarrow \text{set of pasting diagrams, or } X\text{-morphisms}. \]

Structure

- Boundary
- Source/Target
- Subdivision
- Composition
- Map to point
- Identities

Jon Woolf, University of Liverpool (joint with Conor Smyth)

Whitney categories and the Tangle Hypothesis
Example (Sheaf condition \Rightarrow Segal condition)

$$W(\cdots) = W(\bullet \times_{W(\cdot)} \cdots \times_{W(\cdot)} W(\bullet))$$

Objects / morphisms

- $X \leftrightarrow$ template for a pasting diagram,
- $W(X) \leftrightarrow$ set of pasting diagrams, or X-morphisms.

Structure

- Boundary:
- Source/Target
- Subdivision:
- Composition
- Map to point:
- Identities
- Reflection:
- Dual

Jon Woolf, University of Liverpool (joint with Conor Smyth)
Example (Low-dimensional cases)

$0\text{Whit} \simeq \text{Set}$ and $D\Delta \rightarrow hPStr_1$ induces $1\text{Whit} \simeq D\text{Cat}$.
Examples of Whitney categories

Example (Low-dimensional cases)

\[\text{0Whit} \approx \text{Set} \text{ and } D\Delta \to \text{hPStr}_1 \text{ induces } \text{1Whit} \approx \text{DCat}. \]

Example (Representable Whitney categories)

Let \(\text{Rep}(X) = \text{hPStr}_n(-, X) \in n\text{Whit.} \) By Yoneda, \(\text{Rep}(X) \) is free on one \(X \)-morphism, i.e. \(n\text{Whit}(\text{Rep}(X), W) \cong W(X) \).
Examples of Whitney categories

Example (Low-dimensional cases)
$0\text{Whit} \simeq \text{Set}$ and $D\Delta \to hPStr_1$ induces $1\text{Whit} \simeq D\text{Cat}$.

Example (Representable Whitney categories)
Let $\text{Rep}(X) = hPStr_n (_ , X) \in n\text{Whit}$. By Yoneda $\text{Rep}(X)$ is free on one X-morphism, i.e. $n\text{Whit} (\text{Rep}(X) , W) \simeq W(X)$.

Example (Framed tangles)
Define $n\text{Tang}^\text{fr}_k \in (n + k)\text{Whit}$ by

$$n\text{Tang}^\text{fr}_k (X) = \{ \text{codim } k \text{ framed sbmflds } \sqcup \text{ to strata} \} / \text{isotopy}. $$

$\in 1\text{Tang}^\text{fr}_1 ([0, 1]^2)$
Examples of Whitney categories

Example (Low-dimensional cases)

$0\text{Whit} \simeq \text{Set}$ and $D\Delta \to h\text{PStr}_1$ induces $1\text{Whit} \simeq DC\text{at}$.

Example (Representable Whitney categories)

Let $\text{Rep}(X) = h\text{PStr}_n(\dashv, X) \in n\text{Whit}$. By Yoneda $\text{Rep}(X)$ is free on one X-morphism, i.e. $n\text{Whit}(\text{Rep}(X), W) \cong W(X)$.

Example (Framed tangles)

Define $n\text{Tang}_{fr}^k \in (n+k)\text{Whit}$ by

$$n\text{Tang}_{fr}^k(X) = \{ \text{codim } k \text{ framed sbmflds} \upharpoonright \to \text{strata} \} / \text{isotopy}.$$
Formal properties

- nWhit is complete and cocomplete.
Formal properties

- $n\text{Whit}$ is complete and cocomplete.
- The inclusion $n\text{Whit} \hookrightarrow \text{PSh}(h\text{PStr}_n)$ has a left adjoint.
Properties of Whitney categories

Formal properties

- $n\text{Whit}$ is complete and cocomplete.
- The inclusion $n\text{Whit} \hookrightarrow \text{PSh}(\text{hPStr}_n)$ has a left adjoint.
- There is a ‘dagger nerve’ $n\text{Whit} \rightarrow \text{PSh}(D\theta_n)$ induced by $D\theta_n \rightarrow \text{hPStr}_n$ where $D\theta_1 = D\Delta$ and $D\theta_n = D\Delta \triangleright D\theta_{n-1}$.

Jon Woolf, University of Liverpool (joint with Conor Smyth)
Properties of Whitney categories

Formal properties
- $n\text{Whit}$ is complete and cocomplete.
- The inclusion $n\text{Whit} \rightarrow \text{PSh}(\text{hPStr}_n)$ has a left adjoint.
- There is a ‘dagger nerve’ $n\text{Whit} \rightarrow \text{PSh}(D\theta_n)$ induced by $D\theta_n \rightarrow \text{hPStr}_n$ where $D\theta_1 = D\Delta$ and $D\theta_n = D\Delta \circ D\theta_{n-1}$.

Definition (Category of morphisms)
For objects $w_0, w_1 \in W(pt)$ there is a Whitney $(n-1)$-category

$$W(w_0, w_1)(X) = \{\omega \in W(X \times [0,1]) : \omega|_{X \times \{i\}} = p^* w_i, i = 0, 1\}$$

of morphisms between w_0 and w_1, where $p: X \rightarrow \text{pt}$.
The Pontrjagin–Thom construction

Choosing a generic framed point $p \in S^k$ yields a correspondence

isotopy classes of \leftrightarrow homotopy classes of
framed tangles in X prestratified maps $X \to S^k$
The Pontrjagin–Thom construction

Choosing a generic framed point \(p \in S^k \) yields a correspondence

\[
\text{isotopy classes of framed tangles in } X \longleftrightarrow \text{homotopy classes of prestratified maps } X \to S^k
\]

Consider \([p] \in nTang^{fr}_k(S^k)\). Since \(\text{Rep}(S^k) \) free we obtain

\[
PT: \text{Rep}(S^k) \to nTang^{fr}_k:\left[X \xrightarrow{f} S^k \right] \leftrightarrow [f^{-1}(p) \subset X]
\]

in \((n+k)\text{Whit}\). Pontrjagin–Thom \(\Rightarrow \) \(PT \) is an isomorphism.
The Whitney Tangle Hypothesis

Definition (k-tuply monoidal Whitney n-category)

A Whitney $(n + k)$-category W with $W(X) = 1$ for $\dim X < k$.

Theorem (Whitney Tangle Hypothesis, c.f. [BD95])

$n\text{Tang} fr_k$ is the free k-tuply monoidal Whitney n-category on one S_k-morphism.
The Whitney Tangle Hypothesis

Definition (k-tuply monoidal Whitney n-category)
A Whitney $(n+k)$-category W with $W(X) = 1$ for $\dim X < k$.

Definition (k-tuply monoidal functor)
A morphism in $(n+k)$Whit between k-tuply monoidal Whitney n-categories.
The Whitney Tangle Hypothesis

Definition (k-tuply monoidal Whitney n-category)

A Whitney $(n + k)$-category W with $W(X) = 1$ for $\dim X < k$.

Definition (k-tuply monoidal functor)

A morphism in $(n + k)$Whit between k-tuply monoidal Whitney n-categories.

Example

$PT: \text{Rep}(S^k) \to n\text{Tang}^\text{fr}_k$ is a k-tuply monoidal functor.
The Whitney Tangle Hypothesis

<table>
<thead>
<tr>
<th>Definition (k-tuply monoidal Whitney n-category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Whitney ((n + k))-category (W) with (W(X) = 1) for (\text{dim } X < k).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (k-tuply monoidal functor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A morphism in ((n + k))Whit between (k)-tuply monoidal Whitney (n)-categories.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PT: \text{Rep}(S^k) \to nTang^fr_k) is a (k)-tuply monoidal functor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Whitney Tangle Hypothesis, c.f. [BD95])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(nTang^fr_k) is the free (k)-tuply monoidal Whitney (n)-category on one (S^k)-morphism.</td>
</tr>
</tbody>
</table>
References I

Higher-dimensional algebra and topological quantum field theory.

André Joyal.
Dagger not evil.
Posted on Category Theory mailing list, January 2010.

Scott Morrison and Kevin Walker.
Blob homology.

Charles Rezk.
A Cartesian presentation of weak n-categories.
Conor Smyth and Jon Woolf.
Whitney categories and the Tangle Hypothesis.
	\texttt{arXiv:1108.3724 (major revision in progress), 2011.}