Dr Eunjin Kim

Teaching:
MAS191  Introduction to Probability and Statistics 2 (NJTech)  Information  
MAS301  Group Project  Information  Home page (also MOLE) 
MAS320  Fluid Mechanics I  Information  
MAS324  Quantum Theory  Information  
MAS406  Mathematics and Statistics Project  Information 
Research:
Interests:  Fluid dynamics, magnetohydrodynamics (MHD), plasma physics, selforganisation, nonequilibrium statistical mechanics, turbulence, solar/stellar physics, magnetic fusion, homeostasis in biosystems 
Research groups:  Fluid Dynamics, Mathematical Biology, Plasma Dynamics 
Publications:  Preprint page, ArXiv 
Grants
Past grants, as Principal Investigator  
Structure and Dynamics of Solar Interior and Other Stars  STFC 
Statistical Formulation of Intermittency in Magnetised Plasmas  EPSRC 
Past grants, as Coinvestigator  
Consolidated Grant Support for the Solar Physics and Space Plasma Research Centre (SP2RC)  STFC 
Biography:
*Ph D in Physics, University of Chicago
*Editorial Board Member of Plasma
*Guest Editor for Entropy, ā€¯Intermittency and SelfOrganisation in Turbulence and Statistical Mechanicsā€¯ http://www.mdpi.com/journal/entropy/special_issues/Turbulence_Mechanics
*Supervision of postdocs: Nicolas Leprovost: 16/10/200531/03/2008 on PPARC; Nicolas Leprovost: 01/04/200830/08/2010 on STFC; Johan Anderson: 20/03/200719/09/2009 on EPSRC; Andrew P. Newton: 01/03/201130/06/2012 on STFC
*Supervision of PhD Students: Andrew P. Newton (PhD in 2010); Jamie Douglas (PhD in 2011); Schuyler Nicholson (PhD in 2015); Mabruka Mohamed (PhD in 2015); Aditi Sood (PhD in 2015); Avan AlSaffar (PhD in 2018); Laminu Idris (since 2017); Kawther AlArfaj (since 2017)
*Publication
1. REFEREED JOURNALS: [2017] [1] Effect of enhanced dissipation by shear flows on transient relaxation and probability density function, E. Kim and I. Movahedi, Phys. Plasmas, Phys. Plasmas, 24, 112306 (2017) [arXiv:1711.04898]. [2] Effects of shear flows on the evolution of fluctuations in interchange turbulence, I. Movahedi and E. Kim, Phys. Plasmas, 24, 114502 (2017) [arXiv:1711.04897]. [3] Information geometry of nonequilibrium processes in a bistable system with a cubic damping, R. Hollerbach E. Kim, Entropy, 19, 268, e19060268 (2017). [4] Geometric structure and information change in phase transitions, E. Kim and R. Hollerbach, Phys. Rev. E, 95, 062107 (2017). [5] FarFromEquilibrium Time Evolution between Two Gamma Distributions, E. Kim, L.M. Tenkes, R. Hollerbach and Ovidiu Radulescu, Entropy, 19, 511, e19100511 (2017). [6] Timedependent probability density functions and information geometry in stochastic logistic and Gompertz models, L.M. Tenkes, R. Hollerbach, E. Kim, J. Stat. Mech: Theo. Exp., 2017, 123201 (arXiv:1708.02789) (2017). [7] Sustainable theory of a logistic model  Fisher Information approach, A. AlSaffar and E. Kim, Mathematical Biosciences, 285, 8191 (2017). [8] Signature of nonlinear interaction in geometric structure of a nonequilibrium process, E. Kim and R. Hollerbach, Phys. Rev. E, 95, 022137 (2017). [9] Absolute versus convective helical magnetorotational instability in TaylorCouette fows, R. Hollerbach, N. Sibanda and E. Kim, Fluid Dynamics Research, 49, 045501 (2017). [2016] [10] TimeDependent Probability Density Function in Cubic Stochastic Processes, E. Kim and R. Hollerbach, Phys. Rev. E, 94, 052118 (2016). [11] Study of improved confinement by a stepwise increase of the input heating power, M. Asif, M. Mohamed, and E. Kim, Modern Physics Letters B, 30, 1650316 (2016). [12] Dynamical model for spindown of solartype stars, A. Sood, E. Kim, and R. Hollerbach, Astrphysical J., 832, 97 (2016). [13] Suppression of a kinematic dynamo by large shear, A. Sood, R. Hollerbach, and E. Kim, Journal of Physics A: Mathematical and Theoretical, 49, 425501 (2016). [14] Structures in sound: Analysis of Classical Music Using the Information Length, S.B. Nicholson and E. Kim, Entropy, 18 (7), 258 (2016). [15] Geometric method for geometric orbits in the Lorenz system, S.B. Nicholson and E. Kim, Physica Scripta, 91(4), 044006 (2016). [16] Novel mapping in a nonequilibrium stochastic process, J. Haseltine and E. Kim, Journal of Physics A: Mathematical and Theoretical, 49 (17), 175002 (2016). [17] Geometric structure and geodesic motion in a solvable model of nonequilibrium stochastic process, E. Kim, U. Lee, J. Heseltine and R. Hollerbach, Phys. Rev. E, 93(6), 062127 (2016). [18] Variability and degradation of selforganisation in selfsustained oscillators, T. Wright, J. Twaddle, C. Humphries, S. Hayes and E. Kim, Mathematical Biosciences, 273, 5769 (2016). [2015] [19] Complementary relations in nonequilibrium stochastic processes, E. Kim and S. B. Nicholson, Phys. Lett. A, 379 16131618 (2015). [20] Investigation of the statistical distance to reach stationary distributions, S. B. Nicholson and E. Kim, Phys. Lett. A, 379, 8388 (2015). [21] Noisedriven phenotypic heterogeneity with finite correlation time in clonal populations, U. Lee, J. Skinner, J. Reinitz, M.R. Rosner and E. Kim, PLoS ONE, 10 (7): e0132397 (2015). [2014] [22] Fluctuating control parameter in a Lorenz system, M.A. Mohamed and E. Kim, Physica Scripta, 89, 015202 (2014). [23] Detailed mathematical and numerical analysis of a dynamo model and Rotation, A. Sood, and E. Kim, Astron Astrophys, 563, A100 (2014). [24] Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions, J. Lee, K. S. Farquhar, J. Yun, C. Frankenberger, E. Bevilacqua, K. Yeung, E. Kim, G. Balazsi and M. R. Rosner, Proceedings of National Academy of Sciences of the United States of America, 111(3), E364E373 (2014). [25] A fractional FokkerPlanck model for anomalous diffusion, J. Anderson, E. Kim and S. Moradi, Phys. Plasmas, 21, 122109 (2014). [2013] [26] Determining the temporal nature of the solar alpha effect, A. Newton and E. Kim, Astron. Astrophys., 551, A66 (2013). [27] Deciphering interactions of complex systems that do not satisfy detailed balance, S. B. Nicholson, E. Kim and L. S. Schulman, Phys. Lett. A, 377, 18101813 (2013). [28] On the selforganizing process of large scale shear fows, A. Newton and E. Kim, Phys. Plasmas, 20, 092306 (2013). [29] Confinement improvement by a fluctuating input power, S. Douglas, M.A. Mohamed and E. Kim, Phys. plasmas, 20, 114504 (2013). [30] Consistent Model of Dynamo (Magnetic Activity) and Rotation, A. Sood and E. Kim, Astron. Astrophys., 555, A22 (2013). [2012] [31] Effect of stochasticity in mean field dynamo model, A. Newton and E. Kim, Phys. Plasmas, 19, 072310 (2012). [32] A Master equation approach to deciphering nondetailed balance systems, S. Nicholson, E. Kim, and L.S. Schulman, Chaotic Modelling and Simulation (CMSIM) International Journal, 4, 569574 (2012). [2011] [33] A generic model for transport in turbulent shear fows, A. Newton and E. Kim, Phys. Plasmas, 18, 052305 (2011). [34] Generation of coherent magnetic fields in sheared inhomogeneous turbulence: no need for rotation?, N. Leprovost and E. Kim, Phys. Plasmas, 18, 022307 (2011). [2010] [35] Predicting PDF tails of flux in plasma sheath dynamics, J. Anderson and E. Kim, Plasmas Phys. Control. Fusion, 52, 012001 (2010). [36] The influence of shear flow on alpha and beta effect in helical MHD turbulence, N. Leprovost and E. Kim, Geophys. Astrophys. Fluid Dynamics, 104, 167182 (2010). [37] Intermittency and selforganization in turbulent flows, E. Kim, J. Anderson and H. Liu, Physica Scripta, T142, 014053 (2010). [38] On a stochastic model for the spindown of solar type stars, N. Leprovost and E. Kim, Astrophys. J, 719, 287298 (2010). [39] Theory of intermittency in a system with logarithmic nonlinearity, J. Anderson and E. Kim, Phys. Lett. A, 374, 16211624 (2010). [2009] [40] Probability distribution function for selforganization of shear fows, E. Kim, H. Liu, and J. Anderson, Phys. Plasmas, 16, 052304 (2009). [41] Statistical theory of plasma turbulence, E. Kim and J. Anderson, Plasma and Fusion Research, 4, 030 (2009). [42] Dynamo effeciency with shear, N. Leprovost and E. Kim, Astrophys. J. Lett., 696, L125L128 (2009). [43] Dual role of shear flows in 2D MHD turbulence, A.P. Newton and E. Kim, Phys. Rev. Lett., 102, 165002 (2009). [44] Nonperturbative theory of structure formation, J. Anderson and E. Kim, Nuclear Fusion, 49, 075027 (2009). [45] Turbulent transport and dynamo in sheared MHD turbulence with a nonuniform magnetic field, N. Leprovost and E. Kim, Phys. Rev. E, 80, 026302 (2009). [46] Kinematic alpha effect in the presence of a largescale motion, A. Courvoisier and E. Kim, Phys. Rev. E, 80, 046308 (2009). [2008] [47] Structurebased statistical theory of intermittency, E. Kim and J. Anderson, Phys. Plasmas, 15, 114506 (2008). [48] Nonperturbative models of intermittency in edge turbulence, J. Anderson and E. Kim, Phys. Plasmas, 15, 122303 (2008). [49] Resonance enhanced turbulent transport, A. Newton and E. Kim, Phys. Plasmas, 14, 122306 (2008). [50] Dynamo quenching due to shear, N. Leprovost and E. Kim, Phys. Rev. Lett., 100, 144502 (2008). [51] The momentum flux probability distribution function for iontemperaturegradient turbulence, J. Anderson and E. Kim, Phys. Plasmas, 15, 052306 (2008). [52] Effects of flow shear and Alfven waves on twodimensional magnetohydrodynamic turbulence, J. Douglas, E. Kim, and A. Thyagaraja, Phys. Plasmas, 15, 052301 (2008). [53] Quasilinear theory of rotating sheared turbulence  Perpendicular Case, N. Leprovost and E. Kim, Phys. Rev. E, 78, 016301 (2008). [54] Analytical theory for probability distribution function of structure formation, J. Anderson and E. Kim, Phys. Plasmas, 15, 082312 (2008). [55] Quasilinear analysis of the zonal flow backreaction on iontemperaturegradient mode turbulence, J. Anderson, K. Yasuaki, J. Li and E. Kim, Phys. Lett. A, 372, 59875990 (2008). [56] Quasilinear theory of rotating sheared turbulence II  Parallel Case, N. Leprovost and E. Kim, Phys. Rev. E, 78, 036319 (2008). [2007] [57] Selfconsistent theory of turbulent transport in the solar tachocline III. Gravity waves, E. Kim and N. Leprovost, Astron. Astrophys., 468, 10251031 (2007). [58] On a longterm dynamics of the magnetised solar tachocline E. Kim and N. Leprovost, Astron. Astrophys., 465, 633639 (2007). [59] Effect of rotation on the tachocline transport, N. Leprovost and E. Kim, Astron. Astrophys. Letters, 463, L912 (2007). [60] Multiscale theory of rotating turbulence, N. Leprovost and E. Kim, Astron. Astrophys., 471, 901909 (2007). [61] Effect of Rossby and Alfven waves on the dynamics of the tachocline, N. Leprovost and E. Kim, Astrophys. J., 654, 11661170 (2007). [62] The role of magnetic shear in flow shear suppression, E. Kim, Phys. Plasmas, 14, 084504 (2007). [63] Transport in twofluid magnetohydrodynamic turbulence, E. Kim, Phys. Rev. E, 76, 025401(R) (2007). [64] Analytical theory of tachocline transport at midlatitude, N. Leprovost and E. Kim, Astron. Nachr., 328, 11551157 (2007). [2006] [65] Theory of turbulence regulation by oscillatory zonal fows, E. Kim, Phys. Plasmas, 13, 022308 (2006). [66] Consistent theory of turbulent transport in two dimensional magnetohydrodynamics, E. Kim, Phys. Rev. Lett., 96, 084504 (2006). [67] Selfconsistent theory of turbulent transport in the solar tachocline II. Tachocline confinement, N. Leprovost and E. Kim, Astron. Astrophys., 456, 617621 (2006). [68] Turbulence regulation and transport barriers in laboratory plasmas, E. Kim, Journal of Physics: Conference Series, 4, 1019 (2006). [2005] [69] Reduction in intermittent transport by shearing, E. Kim, Phys. Plasmas, 12, 044501 (2005). [70] Turbulence regulation by stochastic zonal flows in dynamical models, E. Kim, Phys. Plasmas, 12, 090902 (2005). [71] Selfconsistent theory of turbulent transport in the solar tachocline I. Anisotropic turbulence, E. Kim, Astron. Astrophys., 441, 763772 (2005). [2004] [72] A nonlinear dynamo driven by rapidly rotating convection, E. Kim, D.W. Hughes and A.M. Soward, Geophys. Astrophys. Fluid Dynamics, 98, 325343 (2004). [73] Random shearing by zonal flows and transport reduction, E. Kim and P.H. Diamond, Phys. Plasmas Lett., 11, L77L80 (2004). [74] Transport reduction by shear flows in dynamical models, E. Kim, P.H. Diamond, and T.S. Hahm, Phys. Plasmas, 11, 45544558 (2004). [2003] [75] Gravity wavedriven fows in the solar tachocline. II. Stationary flows, E. Kim and K.B. MacGregor, Astrophys. J., 588, 645654 (2003). [76] Mean shear flows, zonal flows, and generalized Kelvin Helmholtz modes in drift wave turbulence: a minimal model for LH transition, E. Kim and P.H. Diamond, Phys. Plasmas, 10, 16981704 (2003). [77] Zonal flows and transient dynamics of the LH transition, E. Kim and P.H. Diamond, Phys. Rev. Lett., 90, 185006 (2003). [78] Effect of mean flow shear on cross phase and transport, reconsidered, E. Kim and P.H. Diamond, Phys. Rev. Lett., 91, 075001 (2003). [79] Collisional damping of ETG mode driven zonal flows, E. Kim, C. Holland and P.H. Diamond, Phys. Rev. Lett., 91, 075003 (2003). [80] Nonperturbative models of intermittency in drift wave turbulence: Towards a probabilistic theory of anomalous transport, E. Kim, P.H. Diamond, M. Malkov, T.S. Hahm, K. Itoh, S.I. Itoh, S. Champeaux, I. Gruzinov, O. Gurcan, C. Holland, and M.N. Rosenbluth Nuclear Fusion, 43, 961968 (2003). [81] Investigations of the role of nonlinear couplings in structure formation and transport regulation: experiment, simulation, and theory, C. Holland, P.H. Diamond, S. Champeaux, E. Kim, O. Gurcan, M.N. Rosenbluth, G.R. Tynan, N. Crocker, W. Nevins and J. Candy, Nuclear Fusion, 43, 761780 (2003). [82] Selfconsistent mean field theory in weakly ionized gas, N. Leprovost and E. Kim, Astrophys. J., 598, L99L102 (2003). [2002] [83] Theory of the momentum flux probability distribution function in drift wave turbulence, E. Kim and P.H. Diamond, Phys. Plasmas, 9, 7177 (2002). [84] Are the energy and magnetic potential cascades direct or inverse in 2D MHD turbulence?, E. Kim and B. Dubrulle, Physica D, 165, 213227 (2002). [85] On intermittency in drift wave turbulence: structure of the probability distribution function, E. Kim and P.H. Diamond, Phys. Rev. Lett., 88, 225002 (2002). [86] Dynamics of zonal flow saturation in strong collisionless drift wave turbulence, E. Kim and P.H. Diamond, Phys. Plasmas, 9, 45304539 (2002). [87] Turbulent diffusion of magnetic fields in weakly ionised gas, E. Kim and P.H. Diamond, Astrophys. J., 578, L113116 (2002). [2001] [88] Turbulent transport and equilibrium profile in 2D MHD with background shear, E. Kim and B. Dubrulle, Phys. Plasmas, 8, 813824 (2001). [89] On turbulent reconnection, E. Kim and P.H. Diamond, Astrophys. J., 556, 10521065 (2001). [90] Eddy viscosity and laminarization of sheared flow in 3D reduced magnetohydrodynamic turbulence, E. Kim, T.S. Hahm and P.H. Diamond, Phys. Plasmas, 8, 35763582 (2001). [91] Gravity wavedriven flows in the solar tachocline, E. Kim and K.B. MacGregor, Astrophys. J., 556, L117L120 (2001). [92] Towards a selfconsistent theory of turbulent reconnection, E. Kim and P.H. Diamond, Phys. Lett. A, 291, 407412 (2001). [2000] [93] Mean square displacement in smallscale nonlinear dynamos, E. Kim, Phys. Plasmas, 7, 17461751 (2000). [1999] [94] Nonlinear dynamo in a simplified statistical model, E. Kim, Phys. Lett. A, 259, 232239 (1999). [95] Fast dynamo action driven by rotating convection, E. Kim, D.W. Hughes and A.M. Soward, Geophys. Astrophys. Fluid Dynamics, 91, 303332 (1999). [1998] [96] On a physically realistic fast dynamo, E. Kim, D.W. Hughes and A.M. Soward, Studia geoph. et geod., 42, 335342 (1998). [97] Nonlinear multicellular fast dynamo, D.W. Hughes, F. Cattaneo and E. Kim, Studia geoph. et geod., 42, 328334 (1998). [1997] [98] Turbulent diffusion of largescale magnetic fields in the presence of ambipolar drift, E. Kim, Astrophys. J., 477, 183195 (1997). [99] Flow helicity in a simplified statistical model of a fast dynamo, E. Kim and D.W. Hughes, Phys. Lett. A, 236, 211218 (1997). [1996] [100] Generation of density perturbations by primordial magnetic fields, E. Kim, A. Olinto and R. Rosner, Astrophys. J., 468, 2850 (1996). [101] Waves in radiating fluids, T.J. Bogdan, M. Knolker, K.B. MacGregor and E. Kim, Astrophys. J., 456, 879901 (1996). [102] Suppression of chaos in a simplified nonlinear dynamo model, F. Cattaneo, D.W. Hughes and E. Kim, Phys. Rev. Lett., 76, 20572060 (1996). [103] Fractal properties of the stretchtwistfold magnetic dynamo, S.I. Vainshtein, R.Z. Sagdeev, R. Rosner and E. Kim, Phys. Rev. E, 53, 47294744 (1996). [104] Kinetic helicity, magnetic helicity and fast dynamo action, D.W. Hughes, F. Cattaneo and E. Kim, Phys. Lett. A, 223, 167172 (1996). [1995] [105] Fluctuations in quasitwo dimensional fast dynamos, F. Cattaneo, E. Kim, M.R.E. Proctor and L. Tao, Phys. Rev. Lett., 75, 15221525 (1995).
2. REFEREED CONFERENCE PAPERS: [2009] [106] Probability distribution function of selforganization of shear flows, E. Kim, H.L. Liu and J. Anderson, in SW12  AIP Conference Proceedings Series, Vol. 1216, Edited by M. Maksimovic et al, 308311 (2009). [2008] [107] J Nonperturbative statistical theory of intermittency in ITG drift wave turbulence with zonal flows, IAEA meeting Geneva, Switzerland (2008) (arXiv:0901.1996v1 [physics.plasmph]) [2000] [108] Angular momentum transport by internal gravity waves, E. Kim and K.B. MacGregor, in Waves in dusty, solar and space plasmas, edited by F. Verheest, M. Goossens, M.A. Hellberg and R. Bharuthram, AIP Press, 256263 (2000). [1999] [109] Analytic results on a simple nonlinear dynamo model, E. Kim, in Stellar dynamos: Nonlinearity and chaotic flows, edited by Manuel Nunez Antonio FerrizMas, Astronomical Society of the Pacific Conference Series, Vol. 178, 6978 (1999).
3. BOOKS  Chapters [110] INVITED REVIEW PAPER: Selfconsistent mean field electrodynamics in two and three dimensions, P.H. Diamond, D.W. Hughes and E. Kim, in: The Fluid Mechanics of Astrophysics and Geophysics (Series: The Fluid Mechanics of Astrophysics and Geophysics, Vol 12), Edited by A.M. Soward, C. Jones, D.W. Hughes, and N. Weiss, Taylor Francis, 145192 (2005).
4. INVITED REVIEW PAPERS: [111] Formation of transport barrier by shearing, E. Kim, Mod. Phys. Lett. B, 18, 121 (2004).
*Editorial Board Member of Plasma
*Guest Editor for Entropy, ā€¯Intermittency and SelfOrganisation in Turbulence and Statistical Mechanicsā€¯ http://www.mdpi.com/journal/entropy/special_issues/Turbulence_Mechanics
*Supervision of postdocs: Nicolas Leprovost: 16/10/200531/03/2008 on PPARC; Nicolas Leprovost: 01/04/200830/08/2010 on STFC; Johan Anderson: 20/03/200719/09/2009 on EPSRC; Andrew P. Newton: 01/03/201130/06/2012 on STFC
*Supervision of PhD Students: Andrew P. Newton (PhD in 2010); Jamie Douglas (PhD in 2011); Schuyler Nicholson (PhD in 2015); Mabruka Mohamed (PhD in 2015); Aditi Sood (PhD in 2015); Avan AlSaffar (PhD in 2018); Laminu Idris (since 2017); Kawther AlArfaj (since 2017)
*Publication
1. REFEREED JOURNALS: [2017] [1] Effect of enhanced dissipation by shear flows on transient relaxation and probability density function, E. Kim and I. Movahedi, Phys. Plasmas, Phys. Plasmas, 24, 112306 (2017) [arXiv:1711.04898]. [2] Effects of shear flows on the evolution of fluctuations in interchange turbulence, I. Movahedi and E. Kim, Phys. Plasmas, 24, 114502 (2017) [arXiv:1711.04897]. [3] Information geometry of nonequilibrium processes in a bistable system with a cubic damping, R. Hollerbach E. Kim, Entropy, 19, 268, e19060268 (2017). [4] Geometric structure and information change in phase transitions, E. Kim and R. Hollerbach, Phys. Rev. E, 95, 062107 (2017). [5] FarFromEquilibrium Time Evolution between Two Gamma Distributions, E. Kim, L.M. Tenkes, R. Hollerbach and Ovidiu Radulescu, Entropy, 19, 511, e19100511 (2017). [6] Timedependent probability density functions and information geometry in stochastic logistic and Gompertz models, L.M. Tenkes, R. Hollerbach, E. Kim, J. Stat. Mech: Theo. Exp., 2017, 123201 (arXiv:1708.02789) (2017). [7] Sustainable theory of a logistic model  Fisher Information approach, A. AlSaffar and E. Kim, Mathematical Biosciences, 285, 8191 (2017). [8] Signature of nonlinear interaction in geometric structure of a nonequilibrium process, E. Kim and R. Hollerbach, Phys. Rev. E, 95, 022137 (2017). [9] Absolute versus convective helical magnetorotational instability in TaylorCouette fows, R. Hollerbach, N. Sibanda and E. Kim, Fluid Dynamics Research, 49, 045501 (2017). [2016] [10] TimeDependent Probability Density Function in Cubic Stochastic Processes, E. Kim and R. Hollerbach, Phys. Rev. E, 94, 052118 (2016). [11] Study of improved confinement by a stepwise increase of the input heating power, M. Asif, M. Mohamed, and E. Kim, Modern Physics Letters B, 30, 1650316 (2016). [12] Dynamical model for spindown of solartype stars, A. Sood, E. Kim, and R. Hollerbach, Astrphysical J., 832, 97 (2016). [13] Suppression of a kinematic dynamo by large shear, A. Sood, R. Hollerbach, and E. Kim, Journal of Physics A: Mathematical and Theoretical, 49, 425501 (2016). [14] Structures in sound: Analysis of Classical Music Using the Information Length, S.B. Nicholson and E. Kim, Entropy, 18 (7), 258 (2016). [15] Geometric method for geometric orbits in the Lorenz system, S.B. Nicholson and E. Kim, Physica Scripta, 91(4), 044006 (2016). [16] Novel mapping in a nonequilibrium stochastic process, J. Haseltine and E. Kim, Journal of Physics A: Mathematical and Theoretical, 49 (17), 175002 (2016). [17] Geometric structure and geodesic motion in a solvable model of nonequilibrium stochastic process, E. Kim, U. Lee, J. Heseltine and R. Hollerbach, Phys. Rev. E, 93(6), 062127 (2016). [18] Variability and degradation of selforganisation in selfsustained oscillators, T. Wright, J. Twaddle, C. Humphries, S. Hayes and E. Kim, Mathematical Biosciences, 273, 5769 (2016). [2015] [19] Complementary relations in nonequilibrium stochastic processes, E. Kim and S. B. Nicholson, Phys. Lett. A, 379 16131618 (2015). [20] Investigation of the statistical distance to reach stationary distributions, S. B. Nicholson and E. Kim, Phys. Lett. A, 379, 8388 (2015). [21] Noisedriven phenotypic heterogeneity with finite correlation time in clonal populations, U. Lee, J. Skinner, J. Reinitz, M.R. Rosner and E. Kim, PLoS ONE, 10 (7): e0132397 (2015). [2014] [22] Fluctuating control parameter in a Lorenz system, M.A. Mohamed and E. Kim, Physica Scripta, 89, 015202 (2014). [23] Detailed mathematical and numerical analysis of a dynamo model and Rotation, A. Sood, and E. Kim, Astron Astrophys, 563, A100 (2014). [24] Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions, J. Lee, K. S. Farquhar, J. Yun, C. Frankenberger, E. Bevilacqua, K. Yeung, E. Kim, G. Balazsi and M. R. Rosner, Proceedings of National Academy of Sciences of the United States of America, 111(3), E364E373 (2014). [25] A fractional FokkerPlanck model for anomalous diffusion, J. Anderson, E. Kim and S. Moradi, Phys. Plasmas, 21, 122109 (2014). [2013] [26] Determining the temporal nature of the solar alpha effect, A. Newton and E. Kim, Astron. Astrophys., 551, A66 (2013). [27] Deciphering interactions of complex systems that do not satisfy detailed balance, S. B. Nicholson, E. Kim and L. S. Schulman, Phys. Lett. A, 377, 18101813 (2013). [28] On the selforganizing process of large scale shear fows, A. Newton and E. Kim, Phys. Plasmas, 20, 092306 (2013). [29] Confinement improvement by a fluctuating input power, S. Douglas, M.A. Mohamed and E. Kim, Phys. plasmas, 20, 114504 (2013). [30] Consistent Model of Dynamo (Magnetic Activity) and Rotation, A. Sood and E. Kim, Astron. Astrophys., 555, A22 (2013). [2012] [31] Effect of stochasticity in mean field dynamo model, A. Newton and E. Kim, Phys. Plasmas, 19, 072310 (2012). [32] A Master equation approach to deciphering nondetailed balance systems, S. Nicholson, E. Kim, and L.S. Schulman, Chaotic Modelling and Simulation (CMSIM) International Journal, 4, 569574 (2012). [2011] [33] A generic model for transport in turbulent shear fows, A. Newton and E. Kim, Phys. Plasmas, 18, 052305 (2011). [34] Generation of coherent magnetic fields in sheared inhomogeneous turbulence: no need for rotation?, N. Leprovost and E. Kim, Phys. Plasmas, 18, 022307 (2011). [2010] [35] Predicting PDF tails of flux in plasma sheath dynamics, J. Anderson and E. Kim, Plasmas Phys. Control. Fusion, 52, 012001 (2010). [36] The influence of shear flow on alpha and beta effect in helical MHD turbulence, N. Leprovost and E. Kim, Geophys. Astrophys. Fluid Dynamics, 104, 167182 (2010). [37] Intermittency and selforganization in turbulent flows, E. Kim, J. Anderson and H. Liu, Physica Scripta, T142, 014053 (2010). [38] On a stochastic model for the spindown of solar type stars, N. Leprovost and E. Kim, Astrophys. J, 719, 287298 (2010). [39] Theory of intermittency in a system with logarithmic nonlinearity, J. Anderson and E. Kim, Phys. Lett. A, 374, 16211624 (2010). [2009] [40] Probability distribution function for selforganization of shear fows, E. Kim, H. Liu, and J. Anderson, Phys. Plasmas, 16, 052304 (2009). [41] Statistical theory of plasma turbulence, E. Kim and J. Anderson, Plasma and Fusion Research, 4, 030 (2009). [42] Dynamo effeciency with shear, N. Leprovost and E. Kim, Astrophys. J. Lett., 696, L125L128 (2009). [43] Dual role of shear flows in 2D MHD turbulence, A.P. Newton and E. Kim, Phys. Rev. Lett., 102, 165002 (2009). [44] Nonperturbative theory of structure formation, J. Anderson and E. Kim, Nuclear Fusion, 49, 075027 (2009). [45] Turbulent transport and dynamo in sheared MHD turbulence with a nonuniform magnetic field, N. Leprovost and E. Kim, Phys. Rev. E, 80, 026302 (2009). [46] Kinematic alpha effect in the presence of a largescale motion, A. Courvoisier and E. Kim, Phys. Rev. E, 80, 046308 (2009). [2008] [47] Structurebased statistical theory of intermittency, E. Kim and J. Anderson, Phys. Plasmas, 15, 114506 (2008). [48] Nonperturbative models of intermittency in edge turbulence, J. Anderson and E. Kim, Phys. Plasmas, 15, 122303 (2008). [49] Resonance enhanced turbulent transport, A. Newton and E. Kim, Phys. Plasmas, 14, 122306 (2008). [50] Dynamo quenching due to shear, N. Leprovost and E. Kim, Phys. Rev. Lett., 100, 144502 (2008). [51] The momentum flux probability distribution function for iontemperaturegradient turbulence, J. Anderson and E. Kim, Phys. Plasmas, 15, 052306 (2008). [52] Effects of flow shear and Alfven waves on twodimensional magnetohydrodynamic turbulence, J. Douglas, E. Kim, and A. Thyagaraja, Phys. Plasmas, 15, 052301 (2008). [53] Quasilinear theory of rotating sheared turbulence  Perpendicular Case, N. Leprovost and E. Kim, Phys. Rev. E, 78, 016301 (2008). [54] Analytical theory for probability distribution function of structure formation, J. Anderson and E. Kim, Phys. Plasmas, 15, 082312 (2008). [55] Quasilinear analysis of the zonal flow backreaction on iontemperaturegradient mode turbulence, J. Anderson, K. Yasuaki, J. Li and E. Kim, Phys. Lett. A, 372, 59875990 (2008). [56] Quasilinear theory of rotating sheared turbulence II  Parallel Case, N. Leprovost and E. Kim, Phys. Rev. E, 78, 036319 (2008). [2007] [57] Selfconsistent theory of turbulent transport in the solar tachocline III. Gravity waves, E. Kim and N. Leprovost, Astron. Astrophys., 468, 10251031 (2007). [58] On a longterm dynamics of the magnetised solar tachocline E. Kim and N. Leprovost, Astron. Astrophys., 465, 633639 (2007). [59] Effect of rotation on the tachocline transport, N. Leprovost and E. Kim, Astron. Astrophys. Letters, 463, L912 (2007). [60] Multiscale theory of rotating turbulence, N. Leprovost and E. Kim, Astron. Astrophys., 471, 901909 (2007). [61] Effect of Rossby and Alfven waves on the dynamics of the tachocline, N. Leprovost and E. Kim, Astrophys. J., 654, 11661170 (2007). [62] The role of magnetic shear in flow shear suppression, E. Kim, Phys. Plasmas, 14, 084504 (2007). [63] Transport in twofluid magnetohydrodynamic turbulence, E. Kim, Phys. Rev. E, 76, 025401(R) (2007). [64] Analytical theory of tachocline transport at midlatitude, N. Leprovost and E. Kim, Astron. Nachr., 328, 11551157 (2007). [2006] [65] Theory of turbulence regulation by oscillatory zonal fows, E. Kim, Phys. Plasmas, 13, 022308 (2006). [66] Consistent theory of turbulent transport in two dimensional magnetohydrodynamics, E. Kim, Phys. Rev. Lett., 96, 084504 (2006). [67] Selfconsistent theory of turbulent transport in the solar tachocline II. Tachocline confinement, N. Leprovost and E. Kim, Astron. Astrophys., 456, 617621 (2006). [68] Turbulence regulation and transport barriers in laboratory plasmas, E. Kim, Journal of Physics: Conference Series, 4, 1019 (2006). [2005] [69] Reduction in intermittent transport by shearing, E. Kim, Phys. Plasmas, 12, 044501 (2005). [70] Turbulence regulation by stochastic zonal flows in dynamical models, E. Kim, Phys. Plasmas, 12, 090902 (2005). [71] Selfconsistent theory of turbulent transport in the solar tachocline I. Anisotropic turbulence, E. Kim, Astron. Astrophys., 441, 763772 (2005). [2004] [72] A nonlinear dynamo driven by rapidly rotating convection, E. Kim, D.W. Hughes and A.M. Soward, Geophys. Astrophys. Fluid Dynamics, 98, 325343 (2004). [73] Random shearing by zonal flows and transport reduction, E. Kim and P.H. Diamond, Phys. Plasmas Lett., 11, L77L80 (2004). [74] Transport reduction by shear flows in dynamical models, E. Kim, P.H. Diamond, and T.S. Hahm, Phys. Plasmas, 11, 45544558 (2004). [2003] [75] Gravity wavedriven fows in the solar tachocline. II. Stationary flows, E. Kim and K.B. MacGregor, Astrophys. J., 588, 645654 (2003). [76] Mean shear flows, zonal flows, and generalized Kelvin Helmholtz modes in drift wave turbulence: a minimal model for LH transition, E. Kim and P.H. Diamond, Phys. Plasmas, 10, 16981704 (2003). [77] Zonal flows and transient dynamics of the LH transition, E. Kim and P.H. Diamond, Phys. Rev. Lett., 90, 185006 (2003). [78] Effect of mean flow shear on cross phase and transport, reconsidered, E. Kim and P.H. Diamond, Phys. Rev. Lett., 91, 075001 (2003). [79] Collisional damping of ETG mode driven zonal flows, E. Kim, C. Holland and P.H. Diamond, Phys. Rev. Lett., 91, 075003 (2003). [80] Nonperturbative models of intermittency in drift wave turbulence: Towards a probabilistic theory of anomalous transport, E. Kim, P.H. Diamond, M. Malkov, T.S. Hahm, K. Itoh, S.I. Itoh, S. Champeaux, I. Gruzinov, O. Gurcan, C. Holland, and M.N. Rosenbluth Nuclear Fusion, 43, 961968 (2003). [81] Investigations of the role of nonlinear couplings in structure formation and transport regulation: experiment, simulation, and theory, C. Holland, P.H. Diamond, S. Champeaux, E. Kim, O. Gurcan, M.N. Rosenbluth, G.R. Tynan, N. Crocker, W. Nevins and J. Candy, Nuclear Fusion, 43, 761780 (2003). [82] Selfconsistent mean field theory in weakly ionized gas, N. Leprovost and E. Kim, Astrophys. J., 598, L99L102 (2003). [2002] [83] Theory of the momentum flux probability distribution function in drift wave turbulence, E. Kim and P.H. Diamond, Phys. Plasmas, 9, 7177 (2002). [84] Are the energy and magnetic potential cascades direct or inverse in 2D MHD turbulence?, E. Kim and B. Dubrulle, Physica D, 165, 213227 (2002). [85] On intermittency in drift wave turbulence: structure of the probability distribution function, E. Kim and P.H. Diamond, Phys. Rev. Lett., 88, 225002 (2002). [86] Dynamics of zonal flow saturation in strong collisionless drift wave turbulence, E. Kim and P.H. Diamond, Phys. Plasmas, 9, 45304539 (2002). [87] Turbulent diffusion of magnetic fields in weakly ionised gas, E. Kim and P.H. Diamond, Astrophys. J., 578, L113116 (2002). [2001] [88] Turbulent transport and equilibrium profile in 2D MHD with background shear, E. Kim and B. Dubrulle, Phys. Plasmas, 8, 813824 (2001). [89] On turbulent reconnection, E. Kim and P.H. Diamond, Astrophys. J., 556, 10521065 (2001). [90] Eddy viscosity and laminarization of sheared flow in 3D reduced magnetohydrodynamic turbulence, E. Kim, T.S. Hahm and P.H. Diamond, Phys. Plasmas, 8, 35763582 (2001). [91] Gravity wavedriven flows in the solar tachocline, E. Kim and K.B. MacGregor, Astrophys. J., 556, L117L120 (2001). [92] Towards a selfconsistent theory of turbulent reconnection, E. Kim and P.H. Diamond, Phys. Lett. A, 291, 407412 (2001). [2000] [93] Mean square displacement in smallscale nonlinear dynamos, E. Kim, Phys. Plasmas, 7, 17461751 (2000). [1999] [94] Nonlinear dynamo in a simplified statistical model, E. Kim, Phys. Lett. A, 259, 232239 (1999). [95] Fast dynamo action driven by rotating convection, E. Kim, D.W. Hughes and A.M. Soward, Geophys. Astrophys. Fluid Dynamics, 91, 303332 (1999). [1998] [96] On a physically realistic fast dynamo, E. Kim, D.W. Hughes and A.M. Soward, Studia geoph. et geod., 42, 335342 (1998). [97] Nonlinear multicellular fast dynamo, D.W. Hughes, F. Cattaneo and E. Kim, Studia geoph. et geod., 42, 328334 (1998). [1997] [98] Turbulent diffusion of largescale magnetic fields in the presence of ambipolar drift, E. Kim, Astrophys. J., 477, 183195 (1997). [99] Flow helicity in a simplified statistical model of a fast dynamo, E. Kim and D.W. Hughes, Phys. Lett. A, 236, 211218 (1997). [1996] [100] Generation of density perturbations by primordial magnetic fields, E. Kim, A. Olinto and R. Rosner, Astrophys. J., 468, 2850 (1996). [101] Waves in radiating fluids, T.J. Bogdan, M. Knolker, K.B. MacGregor and E. Kim, Astrophys. J., 456, 879901 (1996). [102] Suppression of chaos in a simplified nonlinear dynamo model, F. Cattaneo, D.W. Hughes and E. Kim, Phys. Rev. Lett., 76, 20572060 (1996). [103] Fractal properties of the stretchtwistfold magnetic dynamo, S.I. Vainshtein, R.Z. Sagdeev, R. Rosner and E. Kim, Phys. Rev. E, 53, 47294744 (1996). [104] Kinetic helicity, magnetic helicity and fast dynamo action, D.W. Hughes, F. Cattaneo and E. Kim, Phys. Lett. A, 223, 167172 (1996). [1995] [105] Fluctuations in quasitwo dimensional fast dynamos, F. Cattaneo, E. Kim, M.R.E. Proctor and L. Tao, Phys. Rev. Lett., 75, 15221525 (1995).
2. REFEREED CONFERENCE PAPERS: [2009] [106] Probability distribution function of selforganization of shear flows, E. Kim, H.L. Liu and J. Anderson, in SW12  AIP Conference Proceedings Series, Vol. 1216, Edited by M. Maksimovic et al, 308311 (2009). [2008] [107] J Nonperturbative statistical theory of intermittency in ITG drift wave turbulence with zonal flows, IAEA meeting Geneva, Switzerland (2008) (arXiv:0901.1996v1 [physics.plasmph]) [2000] [108] Angular momentum transport by internal gravity waves, E. Kim and K.B. MacGregor, in Waves in dusty, solar and space plasmas, edited by F. Verheest, M. Goossens, M.A. Hellberg and R. Bharuthram, AIP Press, 256263 (2000). [1999] [109] Analytic results on a simple nonlinear dynamo model, E. Kim, in Stellar dynamos: Nonlinearity and chaotic flows, edited by Manuel Nunez Antonio FerrizMas, Astronomical Society of the Pacific Conference Series, Vol. 178, 6978 (1999).
3. BOOKS  Chapters [110] INVITED REVIEW PAPER: Selfconsistent mean field electrodynamics in two and three dimensions, P.H. Diamond, D.W. Hughes and E. Kim, in: The Fluid Mechanics of Astrophysics and Geophysics (Series: The Fluid Mechanics of Astrophysics and Geophysics, Vol 12), Edited by A.M. Soward, C. Jones, D.W. Hughes, and N. Weiss, Taylor Francis, 145192 (2005).
4. INVITED REVIEW PAPERS: [111] Formation of transport barrier by shearing, E. Kim, Mod. Phys. Lett. B, 18, 121 (2004).
Research interests:
*Dr Kim is interested in complexity, selforganisation and nonequilibrium processes. Selforganisation is a novel property of complex systems where ordered collective behaviour emerges on a macroscale, which provides a unifying theory for many systems that are constantly changing in time and space. Dr. Kim aspires to understand fundamental mechanisms underpinning complexity (e.g. turbulence, chaos) and the regulation of such complexity into coherent structures (e.g. shear flows), and mechanisms for the breakdown of selforganisation in different systems. She pursues both theory and applications. On the theoretical front, she develops (nonequilibrium) statistical theory (e.g. using probability density function, path integrals, stochastic differential equations, fractional calculus), in particular, a new geometric/information approach, to unify different nonequilibrium processes. On the application front, in the laboratory and astrophysical plasmas, she works on turbulence, mixing, momentum transport, dynamos, magnetic activities and diffusion, fluid dynamics, magnetohydrodynamic turbulence, confinement of fusion plasmas, transport barrier dynamics and the evolution of solar magnetic fields and rotation; in biosystems, homeostasis and its breakdown (tumour, heart rhythm). Her interest in biosystems was sparked not only by the much similarity between biosystems and plasmas/fluids in view of complexity and selforganisation but also by their highly nonlinear/multiscale nature, which she can take advantage of as an excellent framework to develop a new mathematical theory and test against experiments. In particular, Dr. Kim is keen on the information thery (information length) to model complexity and selforganisation in nonlinear dynamical systems, fluid/plasma turbulence, and biosystems.