Answer four questions. If you answer more than four questions, only your best four will be counted.
1. (i) Express both of the following in the form \(x + iy \):

\[
\frac{13 - i}{1 - 2i}; \quad (1 - i)^{11}.
\]

(ii) Express

\[
\frac{(1 - i)^{13}}{(\sqrt{3} - i)^{11}}
\]

in the form \(re^{i\theta} \) with \(r > 0 \) and \(-\pi < \theta \leq \pi\).

(iii) State, without proof, the triangle inequalities for \(|z + w| \) and \(|z - w| \).

Show that, if \(|z| \leq 1 \), then

\[
\frac{1}{5} \leq \left| \frac{3z - 4}{2z + 3} \right| \leq 7.
\]

(iv) Write down the definitions of \(\cosh z \) and \(\sinh z \).

Find all the solutions of the following equation:

\[
2 \cosh z + \sinh z = i.
\]

(v) The path \(\gamma \) is the arc of the circle \(|z + 1| = 1 \) from 0 to -2 given by \(z = -1 + e^{it} \) \((0 \leq t \leq \pi)\). Evaluate

\[
\int_{\gamma} zdz, \quad \int_{\gamma} z^3 \cos(z^4)dz.
\]

(vi) Find all the sixth roots of \(-1\). Hence express \(x^6 + 1 \) as the product of three real quadratic factors.
2 (i) State, without proof, the Cauchy-Riemann equations for a differentiable function. (1 mark)

(a) Let \(g(z) = 4z - 3\bar{z} \) for all \(z \in \mathbb{C} \). Prove that \(g \) is nowhere differentiable. (3 marks)

(b) The function \(h \) is analytic in the complex plane and
\[
\text{Im}(h(z)) + \text{Re}(h(z)) = 2 \quad \text{for all} \quad z \in \mathbb{C}.
\]
Show that \(h \) is constant. (5 marks)

(ii) In each of the following cases, determine whether there is a function \(k \) analytic on \(\mathbb{C} \) with \(\text{Re}(k(x + iy)) = u(x, y) \), giving reasons for your answers:

(a) \(u(x, y) = \cosh x \cosh y \),
(b) \(u(x, y) = x^3 - 3xy^2 - 2y + 1 \).

When \(k \) exists, find an explicit expression for \(k(z) \) in terms of \(z \) and show that you have found all functions the satisfying the conditions. (8 marks)

(iii) Let the path \(\alpha \) from 1 to \(-3 \), consist of the straight line segment from 1 to \(1 + 3i \), followed by the straight line segment from \(1 + 3i \) to \(-3 + 3i \), followed by the straight line segment from \(-3 + 3i \) to \(-3 \). Sketch \(\alpha \). Use the ML estimate to show that
\[
\left| \int_{\alpha} \frac{e^z \sin z}{z^2} \, dz \right| \leq 10 e \cosh 3.
\] (8 marks)
State, without proof, Cauchy’s Theorem and Cauchy’s Integral Formulae for a function and for its derivatives. Your statement should include conditions under which the results are valid. (7 marks)

Let \(\gamma \) be the square contour with vertices 2, 2i, -2, -2i described in the anticlockwise direction. Without using the Residue Theorem, evaluate

(i) \(\int_\gamma \frac{\sin(\pi z)}{3z - 1} \, dz \), (ii) \(\int_\gamma \frac{e^z + 1}{z^2 + 9} \, dz \),

(iii) \(\int_\gamma \frac{e^z}{z^2(z + 3)} \, dz \), (iv) \(\int_\gamma \frac{e^z}{z(z + 1)} \, dz \).

(14 marks)

Let the contour \(\alpha \) be the circle \(|z - 1| = 2\) described in the positive direction. Evaluate

\[\int_\alpha (z^2 + \bar{z}) \, dz. \]

(4 marks)
4. (i) Let \(f \) have a pole of order \(k \) at \(\alpha \). Prove that the residue of \(f \) at the point \(\alpha \) is given by

\[
\text{Res}\{f; \alpha\} = \frac{1}{(k-1)!} \lim_{z \to \alpha} \frac{d^{k-1}}{dz^{k-1}}[(z - \alpha)^k f(z)].
\]

(5 marks)

(ii) For each of the following functions, find all the singularities in \(\mathbb{C} \). Classify these singularities giving reasons for your answers and evaluate the residue at each of them:

(a) \(\frac{\cos(\pi z)}{e^z (z - 1)^2} \),

(4 marks)

(b) \(z \exp\left(\frac{1}{z - 1}\right) \),

(4 marks)

(c) \(\frac{e^{\pi z}}{e^{\pi z} + 1} \),

(5 marks)

(d) \(\frac{1 + \cos(\pi z)}{(z - 1)^2} \),

(3 marks)

(e) \(\frac{1 + \cos(\pi z)}{(z - 1)^5} \).

(4 marks)
5 (i) State, without proof, Cauchy’s Residue Theorem. Your statement should include conditions under which the result is valid. (4 marks)

Let \(\gamma \) be the triangular contour with \textbf{vertices} 2, 2i, -2i described in the anti-clockwise direction. Evaluate

\[
\int_{\gamma} \frac{\sin \pi z}{(2z + 1) \cos \pi z} \, dz , \quad \int_{\gamma} (z + 1) \cos \left(\frac{1}{z - 1} \right) \, dz .
\]

(11 marks)

(ii) Prove that

\[
\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2 + 1)(x^2 + 4)} \, dx = \frac{\pi(e - 1)}{3e^2} .
\]

(10 marks)

\textbf{End of Question Paper}