Answer four questions. If you answer more than four questions, only your best four will be counted.

A list of formulae is provided on the last page.

1. (i) The curve in the following picture is parametrised by \((a \cos^3 t, a \sin^3 t)\) for some suitable values of \(t\). Find its total arc length. \((7 \text{ marks})\)

(ii) Find the maximum and minimum values of curvature on the ellipse defined by \(x^2 + 4y^2 = 1\). \((9 \text{ marks})\)

(iii) A curve on \(\mathbb{R}^2\) is said to be self-similar if it is congruent to its own image under any map of the form

\[\varphi : \mathbb{R}^2 \to \mathbb{R}^2, \quad \varphi(x, y) = (\lambda x, \lambda y), \quad \text{where } \lambda > 0. \]

Let \(C\) be a curve on \(\mathbb{R}^2\) and \(k(s)\) be its curvature function in terms of a unit-speed parameter \(s > 0\). Prove that, if \(k(\lambda s) = \lambda^{-1}k(s)\) for \(s, \lambda > 0\), then \(C\) is self-similar. \((9 \text{ marks})\)
Consider the following vector-valued function

\[\varphi(u, v) = \left(u, \sqrt{v^2 + 1}, \ln(v + \sqrt{v^2 + 1}) \right). \]

(a) Show that \(\varphi \) defines a local isometry between \(\mathbb{R}^2 \) and some surface \(S \subset \mathbb{R}^3 \). (5 marks)

(b) Find all the geodesics on \(S \) that pass through \((0, 1, 0)\). (7 marks)

(c) What is the arc length of the shortest path on \(S \) between \((0, 1, 0)\) and \((1, \sqrt{2}, \ln(1 + \sqrt{2}))\)? (4 marks)

(ii) Given a surface in \(\mathbb{R}^3 \), a curve on the surface is called a normal section if

- the curve is the intersection of the surface with a plane, and
- the normal vectors of the surface along the curve are parallel to the same plane.

Prove that any normal section is a pre-geodesic. (9 marks)

Let \(S \) be the surface (catenoid) parametrised by

\[x(t, \theta) = (\cosh t \cos \theta, \cosh t \sin \theta, t). \]

(a) Show that the first fundamental form of this parametrisation is \(\cosh^2 t \left(dt^2 + d\theta^2 \right) \). (2 marks)

(b) Find the area of the region on \(S \) between the latitudes \(t = 0 \) and \(t = \ln 2 \). (7 marks)

(c) Let \(S' \) be the cylinder in \(\mathbb{R}^3 \) defined by \(x^2 + y^2 = 1 \). Find a function \(f \) such that the following map

\[\varphi : S \to S', \quad \varphi(x(t, \theta)) = (\cos \theta, \sin \theta, f(t)) \]

preserves the areas of all regions. (8 marks)

(ii) Let \(X(u, v) \) and \(Y(u, v) \) be two functions that satisfy

\[X_u(u, v) = Y_v(u, v), \quad X_v(u, v) = -Y_u(u, v). \]

Show that the map \(\psi : \mathbb{R}^2 \to \mathbb{R}^2 \) defined by \(\psi(u, v) = (X(u, v), Y(u, v)) \) is conformal. (8 marks)
4 (i) Suppose a surface in \mathbb{R}^3 has a parametrisation $x(u,v)$ whose first and second fundamental forms are respectively

$$(u^2 + 1)^2(du^2 + dv^2), \quad 2du^2 + (u^2 - 1)dv^2.$$

(a) Find the principal curvatures as functions of (u,v). \hspace{1cm} (6 marks)

(b) For what values of (u,v) are all tangential directions principal? \hspace{1cm} (3 marks)

(c) For what values of (u,v) are there tangential directions with zero normal curvature? \hspace{1cm} (6 marks)

(ii) Prove that, if a surface in \mathbb{R}^3 has a parametrisation whose second fundamental form is zero everywhere, then it must be contained in a plane. \hspace{1cm} (10 marks)

5 (i) The standard unit sphere S^2 can be parametrised by

$$x(\phi, \theta) = (\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$$

whose first and second fundamental forms are both $d\phi^2 + \cos^2 \phi d\theta^2$.

(a) Find the Gaussian curvature of S^2 as a function of (ϕ, θ). \hspace{1cm} (5 marks)

(b) Does there exist any local isometry between some part of S^2 and some part of a plane? Briefly explain why. \hspace{1cm} (4 marks)

(c) Find all the latitudes on S^2 (i.e., curves of the form $\phi = \text{constant}$) along which parallel transport takes any tangent vector v to $-v$. \hspace{1cm} (7 marks)

(ii) Let S be a surface whose Gaussian curvature is -1 everywhere. Prove that the area of any geodesic triangle on S is less than π. \hspace{1cm} (9 marks)

End of Question Paper
List of Formulae

For a curve on \(\mathbb{R}^2 \) parametrised by \(\mathbf{x}(t) = (x(t), y(t)) \):

- arc length from \(\mathbf{x}(a) \) to \(\mathbf{x}(b) \)
 \[
 \int_a^b \| \mathbf{x}'(t) \| \, dt
 \]

- curvature
 \[
 k(t) = \frac{x'(t)y''(t) - y'(t)x''(t)}{[x'(t)^2 + y'(t)^2]^{3/2}}
 \]

For a surface in \(\mathbb{R}^3 \) parametrised by \(\mathbf{x}(u, v) \):

- first fundamental form
 \[
 E du^2 + 2F du dv + G dv^2, \quad E = \mathbf{x}_u \cdot \mathbf{x}_u, \quad F = \mathbf{x}_u \cdot \mathbf{x}_v, \quad G = \mathbf{x}_v \cdot \mathbf{x}_v
 \]

- surface areas
 \[
 \iint \sqrt{EG - F^2} \, du dv
 \]

- second fundamental form
 \[
 L du^2 + 2M du dv + N dv^2, \quad L = \mathbf{x}_{uu} \cdot \mathbf{n}, \quad M = \mathbf{x}_{uv} \cdot \mathbf{n}, \quad N = \mathbf{x}_{vv} \cdot \mathbf{n}
 \]
 where \(\mathbf{n} = \frac{\mathbf{x}_u \times \mathbf{x}_v}{\| \mathbf{x}_u \times \mathbf{x}_v \|} \)

- Weingarten matrix
 \[
 W = \begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1} \begin{bmatrix} L & M \\ M & N \end{bmatrix}
 \]

- Gaussian curvature
 \[
 K = \det W
 \]

The Gauss-Bonnet formula for a compact region \(R \) on a surface:
\[
\iint_R K \, dA + \int_{\partial R} k_g ds + \sum \text{turning angles} = 2\pi \chi(R)
\]