1. (i) Let X be a set. Prove that the set $S(X)$ of all bijections $f : X \to X$ is a group under composition of functions.

(ii) Let G be a group. For any $a \in G$ define the map $l_a : G \to G$ by the rule $l_a(x) := ax$. Prove that the map $G \to S(G) : a \mapsto l_a$ is an injective homomorphism of groups. [You may assume without proof that $l_a \in S(G)$ for all a.]

(iii) (a) For a group G define its group of automorphisms $\text{Aut}(G)$ and the group of inner automorphisms $\text{Inn}(G)$. You should carefully define all the terms and notation used.

(b) Prove that $\text{Inn}(G)$ is a subgroup of $\text{Aut}(G)$.

(c) Determine $\text{Aut}(\mathbb{Z}/24\mathbb{Z})$ and $\text{Inn}(\mathbb{Z}/24\mathbb{Z})$ explaining your reasoning. Express $\text{Aut}(\mathbb{Z}/24\mathbb{Z})$ as a direct product of cyclic groups of prime power order.
(i) Define the centre of a group and prove that it is a normal subgroup.

(4 marks)

(ii) (a) Let H be a subgroup of G. Prove that $H \cap Z(G)$ is a subgroup of $Z(H)$.

(2 marks)

(b) Give an example of H and G where $Z(H) \neq H \cap Z(G)$.

(2 marks)

(iii) (a) Define the orthogonal group O_2 and the elements R_θ, S_θ of O_2.

(3 marks)

(b) By multiplying out matrices (and quoting relevant trigonometric identities) show that $R_\theta S_\phi = S_\theta + \phi$.

(2 marks)

For the following parts you may assume that all elements of O_2 are of the form R_θ or S_θ for suitable θ, and you may use the identities $R_\theta^{-1} = R_{-\theta}$, $S_\theta S_\phi = R_{\theta - \phi}$ and $S_\theta R_\phi = S_{\theta - \phi}$ without proving them.

(c) Determine the conjugacy class of S_θ in O_2.

(2 marks)

(d) The conjugacy class of R_θ is given by $\{R_\theta, R_\theta^{-1}\}$ (no proof required for this fact). By considering the conjugacy classes of its elements determine the centre of O_2.

(3 marks)

(iv) Let $T_4(Q)$ be the group of invertible 4×4 lower triangular matrices over Q, i.e., matrices of the form

$$
\begin{pmatrix}
 a_{11} & 0 & 0 & 0 \\
 a_{21} & a_{22} & 0 & 0 \\
 a_{31} & a_{32} & a_{33} & 0 \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix} \in \text{GL}_4(Q).
$$

Prove that its centre is the set of scalar matrices $\{rE \mid r \in Q^*\}$, where E is the 4×4 identity matrix.

(7 marks)
(i) Give the definition of the action of a group G on a set X.
(3 marks)

(b) Given a homomorphism $\phi : G \to S(X)$ explain how to define an action of G on X and prove that it satisfies the necessary axioms.
(4 marks)

(ii) Let S be a subset of a group G. For $g \in G$ define
$$g \ast S := gSg^{-1} = \{gsg^{-1} : s \in S\}.$$
(a) Show that this defines a group action of G on its set of subsets.
(4 marks)

(b) If H is a subgroup of G prove that H is a normal subgroup of the stabilizer of H under this action, called the normalizer $N_G(H)$.
(4 marks)

(iii) Let C be a cube centred at the origin in \mathbb{R}^3 and write
$$H = \text{Dir}(C) = \{A \in \text{SO}_3 | AC = C\}.$$
(a) Describe a set of four things on which H acts non-trivially, and explain carefully how this gives a homomorphism $\phi : H \to S_4$.
(4 marks)

(b) Let x be a point on the surface of C that lies on an edge, close to a corner but not at the corner. Prove that the orbit of x has 24 elements. By considering the orders of various sets, and assuming that ϕ is injective, deduce that ϕ is surjective.
(6 marks)

(iv) State the Sylow theorems. You should carefully define all the terms and notation used.
(5 marks)

(ii) Determine the number of Sylow 5-subgroups of S_5.
(5 marks)

(iii) Let G be a group of order 99.
(a) Show that G has a normal subgroup N of order 11.
(4 marks)

(b) Prove that if P is a Sylow 3-subgroup of G then every element of P commutes with every element of N.
(7 marks)

(c) Deduce that G is abelian. [You may use without proof the fact that for every prime p a group of order p^2 is abelian.]
(4 marks)