Answer all four questions.

1 (i) Consider a magnetic field with components

\[B_x(x, z) = \frac{\partial \psi}{\partial z}, \quad B_y = B_y(x, z), \quad B_z(x, z) = -\frac{\partial \psi}{\partial x}, \]

where \(\psi = \psi(x, z) \).

(a) Show that \(\nabla \cdot B = 0 \). \hspace{1cm} (2 marks)

(b) Show that \(B \cdot \nabla \psi = 0 \) and that projections of field lines in the \(xz \)-plane are given by \(\psi = \text{constant} \). \hspace{1cm} (6 marks)

(c) Show that if \(\mathbf{J} \times \mathbf{B} = 0 \), where \(\mathbf{J} \) is the current density, then

\[B_y = B_y(\psi) \]

and \(\psi \) satisfies

\[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial z^2} + B_y \frac{dB_y}{d\psi} = 0. \]

(12 marks)

(ii) Calculate the approximate timescale (in years) for the decay of the interstellar magnetic field given the parameters \(L = 3 \times 10^{16} \text{ m} \) and \(\eta = 3.6 \times 10^6 \text{ cm}^2 \text{ s}^{-1} \). \hspace{1cm} (5 marks)

2 (i) State the relationship between Lagrangian and Eulerian perturbations. Write the Lagrangian density perturbation in terms of the Eulerian perturbation. \hspace{1cm} (4 marks)
(ii) Consider
\[B = B_0(y/a, x/a, 0). \]
Sketch the field lines showing the direction. \((4 \text{ marks})\)

Calculate the magnetic tension and magnetic pressure forces. Comment on the direction of each. Give comments about the Lorentz force. \((7 \text{ marks})\)

(iii) Prove that
\[\frac{\partial \theta}{\partial \theta} = -\hat{r}, \]
where \(r\) and \(\theta\) are two-dimensional polar coordinates with \(\hat{r}\) and \(\hat{\theta}\) being the corresponding unit vectors. \((3 \text{ marks})\)

(iv) Prove, using (iii), that for magnetic fields of the form \(B = B_\theta(r)\hat{\theta}\),
\[(B \cdot \nabla)B = -\frac{B_\theta^2}{r}\hat{r}. \]
\((3 \text{ marks})\)

3 (i) (a) Ignoring viscosity, gravity and diffusivity, derive the linearised induction equation and equation of motion for adiabatic, ideal perturbation of the form \(\sim e^{ikr-\omega t}\) about a static and uniform equilibrium state with magnetic force alone. \((6 \text{ marks})\)

You may use \(\nabla \times (A \times B) = (B \cdot \nabla)A - (A \cdot \nabla)B + (\nabla \cdot B)A - (\nabla \cdot A)B\) and \(A \times (B \times C) = (A \cdot C)B - (A \cdot B)C\).

(b) Derive the dispersion relations for Alfvén and compressional Alfvén waves using linearised MHD equations obtained in (i). \((8 \text{ marks})\)

(c) State one property of each:
(a) Alfvén waves
(b) compressional Alfvén waves. \((2 \text{ marks})\)

(ii) (a) Write the induction equation for a perfectly conducting medium. Given a velocity field \(v = (yz, -xz, 0)\) and the initial condition on the magnetic field
\[B(x, 0) = (x, -y, 0), \]
find \(B(x, t)\) by obtaining the Lagrangian coordinates corresponding to \(v\) and applying the Cauchy solution. \((19 \text{ marks})\)
Hint: Use an initial condition $x(0) = (a_1, a_2, a_3)$ and also make use of $x(0)$ for the initial magnetic field $B(x, 0) = B_0$.

(b) Having obtained $B(x, t)$ in (iv), verify by direct substitution that it is indeed the solution of the induction equation. (4 marks)

(i) Consider a cartesian coordinate system where the magnetic and velocity fields are independent of y, i.e.

$$B = \left(-\frac{\partial A}{\partial z}, B_x, \frac{\partial A}{\partial x} \right),$$

$$v = \left(-\frac{\partial \psi}{\partial z}, v_y, \frac{\partial \psi}{\partial x} \right),$$

where A and ψ are scalar potential functions for magnetic and flow fields, respectively. Using the magnetic induction equation, the equations for the evolution of B and A can be given as

$$\frac{\partial B}{\partial t} + \left(\frac{\partial \psi}{\partial x} \frac{\partial B}{\partial z} - \frac{\partial \psi}{\partial z} \frac{\partial B}{\partial x} \right) = \left(\frac{\partial A}{\partial x} \frac{\partial v_y}{\partial z} - \frac{\partial A}{\partial z} \frac{\partial v_y}{\partial x} \right)$$

$$- \left(\nabla \cdot (\alpha \nabla A) - \eta \nabla^2 B \right),$$

(I)

$$\frac{\partial A}{\partial t} + \left(\frac{\partial \psi}{\partial z} \frac{\partial A}{\partial z} - \frac{\partial \psi}{\partial x} \frac{\partial A}{\partial x} \right) = \alpha B + \eta \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right] A.$$ (II)

Simplify the above equations (I and II) by setting $\psi = 0$, $v_y = Qz$ and ignoring the term containing α in the equation for the evolution of B. (2 marks)

(ii) Assuming solutions of the form $(A, B) = (\hat{A}, \hat{B}) e^{\sigma t - i(k_x x + k_z z)}$ in the simplified equations obtained in (i), show that the following condition is satisfied for the solutions to exist

$$(\sigma + \eta \kappa^2)^2 = -ik_x \alpha Q,$$

where $\kappa^2 = k_x^2 + k_z^2$. (6 marks)

(iii) In the equations for the evolution of B and A in (i), assume $\psi = v_y = 0$ but retain the term containing α to be a constant. Substitute the same solutions of the form $(A, B) = (\hat{A}, \hat{B}) e^{\sigma t - i(k_x x + k_z z)}$ and show that now the solution satisfies the relation

$$\sigma = \pm \alpha \kappa - \eta \kappa^2.$$ (7 marks)

End of Question Paper