Answer four questions. You are advised not to answer more than four questions: if you do, only your best four will be counted.

Please leave this exam paper on your desk
Do not remove it from the hall

Registration number from U-Card (9 digits)
to be completed by student
1 (i) Consider the cubic equation
\[t^3 + pt + q = 0, \tag{*} \]
where \(p \) and \(q \) are real numbers.
(a) Show that if \((*) \) has repeated roots then \(4p^3 + 27q^2 = 0 \).
(b) Show that if \((*) \) has one real and two (non-real) complex roots, then \(4p^3 + 27q^2 > 0 \).
\(\text{(9 marks)} \)

(ii) Define the following concepts:
- the characteristic of a field,
- a homomorphism of fields,
- the degree of a homomorphism of fields,
- an automorphism of a field,
- an ideal in a ring.
\(\text{(9 marks)} \)

(iii) Suppose that \(\varphi : K \rightarrow L \) is a homomorphism of fields.
(a) Show that \(\varphi \) is injective.
(b) Show that \(K \) and \(L \) have the same characteristic.
\(\text{(7 marks)} \)

2 A polynomial \(f(x) = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}[x] \) is \emph{primitive} if the greatest common divisor of \(a_0, \ldots, a_d \) is 1.
(a) Prove that if \(f(x) \) and \(g(x) \) are primitive polynomials in \(\mathbb{Z}[x] \), then so is \(f(x)g(x) \).
\(\text{(5 marks)} \)

(b) Let \(q(x) \) be a monic polynomial in \(\mathbb{Z}[x] \), and suppose that there is a factorisation \(q(x) = f(x)g(x) \) with both of \(f(x) \) and \(g(x) \) monic polynomials in \(\mathbb{Q}[x] \).
Show that in fact \(f(x) \) and \(g(x) \) lie in \(\mathbb{Z}[x] \).
\(\text{(7 marks)} \)

(c) List the quadratic polynomials over \(\mathbb{F}_2 \) and establish whether they are reducible or irreducible.
\(\text{(4 marks)} \)

(d) Show that the polynomial \(x^5 + x^2 + 1 \) is irreducible in \(\mathbb{F}_2[x] \).
Deduce, using (b) and (c) or otherwise, that the polynomial \(x^5 + x^2 + 1 \) is also irreducible in \(\mathbb{Q}[x] \).
\(\text{(9 marks)} \)
3 (a) Let L and M be fields, and let $\theta_1, \ldots, \theta_n : L \to M$ be n distinct homomorphisms. Let $b_1, \ldots, b_n \in M$ and suppose that for all $a \in L$ we have
\[\sum_{i=1}^{n} b_i \theta_i(a) = 0. \]
Show that $b_1 = b_2 = \cdots = b_n = 0$. (10 marks)

(b) Now let K be another field and let $\varphi : K \to L$ and $\psi : K \to M$ be field homomorphisms with $\deg(\varphi) < \infty$.
Write $E(\varphi, \psi)$ for the set of homomorphisms $\theta : L \to M$ with $\theta \varphi = \psi$.
Using (a) or otherwise, show that $|E(\varphi, \psi)| \leq \deg(\varphi)$. (10 marks)

(c) Let N/K be a field extension of finite degree. Explain what it means for N to be normal over K. Give one criterion in terms of roots of polynomials, and another criterion in terms of numbers of homomorphisms. (5 marks)

4 Put $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{7})$.
(a) Write down a basis for L over \mathbb{Q}. (You are not asked to prove that your answer is correct.) (3 marks)

In the rest of the question you may assume without proof that L/\mathbb{Q} is Galois.

(b) List without proof the elements of the group $G(L/\mathbb{Q})$. To which well-known group is $G(L/\mathbb{Q})$ isomorphic? (6 marks)

(c) For each of the following fields K_i, determine the subgroup $H_i \leq G(L/\mathbb{Q})$ that corresponds to K_i under the Galois correspondence.
$K_1 = \mathbb{Q}(\sqrt{14})$, $K_2 = \mathbb{Q}(\sqrt{6}, \sqrt{21})$, $K_3 = \mathbb{Q}(\sqrt{2} + \sqrt{7})$, $K_4 = \mathbb{Q}(\sqrt{42})$. (7 marks)

(d) Use the Galois correspondence to show that $K_1 \leq K_3$, and then prove the same thing by a direct calculation. (4 marks)

(e) How many fields M are there with $\mathbb{Q} < M < L$ and $[M : \mathbb{Q}] = 4$? (5 marks)

5 Consider the polynomial $f(x) = x^4 + 8x^2 - 2 \in \mathbb{Q}[x]$.
Define $\alpha = \sqrt{3\sqrt{2} - 4}$, and $M = \mathbb{Q}(\alpha, \sqrt{-2})$.
(a) Show that $f(x)$ is irreducible over \mathbb{Q}, stating clearly, without proof, any general criterion which you use. (5 marks)

(b) Show that $f(x)$ has roots $\pm \alpha, \pm \sqrt{-2}/\alpha$. Deduce that M is a splitting field for $f(x)$. (7 marks)

(c) Show that $\mathbb{Q}(\alpha) = M \cap \mathbb{R} \neq M$, and deduce that $[M : \mathbb{Q}] = 8$. (5 marks)

(d) Show that there exist automorphisms $\varphi, \psi \in G(M/\mathbb{Q})$ such that φ has order 4, ψ has order 2, and $G(M/\mathbb{Q}) = \langle \varphi, \psi \rangle$. (8 marks)

End of Question Paper