Vectors and Mechanics

Attempt all the questions. The allocation of marks is shown in brackets. The total number of marks available is 60.

1 Points P and Q have position vectors \(p = 3i + 7j - 2k \) and \(q = -3i + 2j + 2k \) respectively.

Find:
(i) The position vector of the mid-point of PQ;
(ii) The vector \overrightarrow{PQ};
(iii) The parametric vector equation of the line PQ. \((3 \text{ marks}) \)

2 (i) Given the vectors $a = i - j - k$ and $b = 2i + j + 2k$, find $a \cdot b$.
Hence find the angle between the vectors a and b, giving your answer in radians correct to three significant figures.

(ii) Given the vectors $u = i + 2j + 7k$ and $v = i + j - 2k$, find $u \times v$.
Hence find a unit vector perpendicular to both u and v. \((5 \text{ marks}) \)

3 A line L has parametric vector equation
\[
r = (1 + 2\lambda) \, i + (2 - \lambda) \, j + (\lambda - 5) \, k.
\]
A plane Π has vector equation
\[
r \cdot (-2i + j - k) = 2.
\]

(i) Find the point of intersection (if any) of the line L and the plane Π.

(ii) Explain why the line L is perpendicular to the plane Π. \((5 \text{ marks}) \)
4 A particle is projected from the origin O with speed V at an angle θ above the horizontal. Air resistance can be ignored.

If the horizontal and vertical displacements of the particle at time t are x and z respectively, write down expressions for x and z in terms of t, V, θ and the acceleration due to gravity g.

A stone is thrown from a height of 1.5 m above flat ground, at an angle $\pi/4$ above the horizontal. It lands on the ground at a horizontal distance of 30 m from the point of projection. Ignoring air resistance and taking the acceleration due to gravity to be $g = 9.8 \text{ m s}^{-2}$, find the speed of the stone when launched, giving your answer correct to two significant figures. \hspace{1cm} (5 marks)

5 At time t, the position vector of a moving particle of mass M is $r(t)$, where

$$r(t) = 3at \hat{i} + bt^4 \hat{j}$$

and a and b are positive constants.

Find:

(i) The velocity and acceleration of the particle at time t;

(ii) The total force \mathbf{F} acting on the particle at time t;

(iii) The kinetic energy of the particle at time t;

(iv) The work done by the force \mathbf{F} on the particle during the period from $t = 0$ to $t = T$;

(v) The impulse of the force \mathbf{F} on the particle during the period from $t = 0$ to $t = T$. \hspace{1cm} (7 marks)

6 At time $t = 0$ a particle A is at the origin and a particle B is at the point with position vector $5\hat{i} - 10\hat{j} - 12\hat{k}$ m.

Particle A moves with constant velocity $2\hat{i}$ m s$^{-1}$ and particle B moves with constant velocity $4\hat{i} + 4\hat{j} + 5\hat{k}$ m s$^{-1}$.

Show that the least distance between A and B in the subsequent motion is $\sqrt{89}$ m. \hspace{1cm} (4 marks)
A car of mass M is travelling without slipping round a rough bend of radius R which is banked at an angle α to the horizontal.

Draw clear diagrams showing the forces on the car perpendicular to the driving direction if the car is travelling (a) at the minimum possible speed; (b) at the maximum possible speed. (3 marks)

A particle of mass m moves along the x-axis with initial speed u.

The only force acting on the particle is a resistance force of magnitude mkv^2, where v is the speed of the particle and k is a constant.

Show that the equation of motion of the particle takes the form

$$\frac{1}{v} \frac{dv}{dx} = -k.$$

Find the speed of the particle when it has travelled a distance $x = \frac{\ln 2}{2k}$.

At this instant the particle collides and coalesces with a stationary particle of equal mass m. Find the speed of the new particle immediately after the collision. (7 marks)

Two particles C and D, of masses m and $m/2$ respectively, are attached to the lower end of a light elastic string of stiffness $9mg/L$ where g is the acceleration due to gravity and L is the natural length of the string. The upper end O of the string is fixed.

Find the extension y of the string when the particles hang in equilibrium.

At time $t = 0$ the particle D falls off the end of the string. In the subsequent motion the distance OC is $x + \frac{10L}{9}$. Show that

$$\frac{d^2x}{dt^2} = -\omega^2 x$$

where ω is a positive constant which you should find in terms of g and L.

Find $x(t)$ in the subsequent motion. (8 marks)
A particle P of mass M_1 is attached to one end of a light inextendible string. The other end of the string is attached to a second particle Q, of mass M_2. The particle Q is resting on a rough plane inclined at an angle α to the horizontal. The coefficient of friction between the particle Q and the inclined plane is $\tan \lambda$. Air resistance can be ignored.

The string passes over a smooth pulley S at the end of the plane. The pulley S exerts no forces on the system. The angle between the string SP and the downwards vertical is θ. The whole system is shown in the diagram below:

![Diagram of the system with particles P and Q and pulley S.]

The particle Q is at rest. The particle P moves on an arc of a vertical circle with S at the centre so that the distance $SP = L$ where L is a constant. During the motion of P the angle θ varies between $-\beta$ and β.

(i) Draw a clear diagram showing the forces on the particles P and Q.

(ii) Show that the particle Q remains at rest if T, the magnitude of the tension in the string, satisfies

$$T \leq M_2 g \frac{\sin (\alpha + \lambda)}{\cos \lambda}.$$

(iii) By considering the motion of the particle P, show that the tension in the string has magnitude

$$T = M_1 g [3 \cos \theta - 2 \cos \beta].$$

Hence find the maximum value of T during the motion of P.

(iv) Deduce that Q can remain at rest while P is moving if

$$M_1 \leq M_2 \frac{\sin (\alpha + \lambda)}{\cos \lambda [3 - 2 \cos \beta]}.$$

(13 marks)

End of Question Paper