1. Let \(\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} \) be a random vector with a multivariate normal distribution, with mean \(\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \) and covariance matrix \(\begin{pmatrix} 16 & 6 & k \\ 6 & 9 & k \\ k & k & 16 \end{pmatrix} \).

(a) What is the marginal distribution of \(X \)?

(b) What is the correlation between \(X \) and \(Y \)?

(c) Let \(U = X + Y \) and \(V = X + Z \).

(i) Find the mean vector and covariance matrix of \(U \) and \(V \).

(ii) For what value of \(k \) are \(U \) and \(V \) independent? For this value of \(k \), what is the variance of \(V \)?
2 Let X be a random variable with probability density function

$$f_X(x) = \begin{cases} \frac{x + 1}{2} & -1 < x < 1 \\ 0 & \text{otherwise}. \end{cases}$$

(a) Let $Y = \sin^{-1}(X)$. Find the probability density function of Y. (4 marks)

(b) Let $Z = X^2$. Find the probability density function of Z. (5 marks)

3 Let S be the square $\{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq 1\}$ and let X and Y be two random variables with joint probability density function given by

$$f_{X,Y}(x, y) = \begin{cases} \frac{6}{5}(x + y^2) & (x, y) \in S \\ 0 & \text{otherwise}. \end{cases}$$

(a) Find the marginal probability density function of Y. (3 marks)

(b) Find the conditional probability density function of X, given that $Y = y$, assuming $0 \leq y \leq 1$. (3 marks)

(c) Let $U = XY$ and $V = X/Y$. Find the joint probability density function of U and V, stating carefully the values for which it is non-zero. (8 marks)

4 Let $x = x_1, x_2, \ldots, x_n$ be a random sample from an Exponential distribution with parameter $\lambda > 0$.

(a) Find the likelihood of λ given the data x. (2 marks)

(b) Find the maximum likelihood estimate of λ given the data x. (7 marks)

(c) Let $n = 2$, and let the observations be $x_1 = 1.73$ and $x_2 = 3.03$. By considering the difference between the log likelihood at λ and at its maximum, discuss how consistent these data are with

(i) $\lambda = 0.6$;

(ii) $\lambda = 5$. (5 marks)
Consider the linear model

\[y_1 = \beta_0 x_1 + \beta_1 + \epsilon_1 \]
\[y_2 = -\beta_0 + \beta_1 \left(\frac{x_2}{2} \right) + \epsilon_2 \]
\[y_3 = \beta_1 x_3 + \epsilon_3 \]

where the random errors \(\epsilon_i \) are i.i.d. \(\sim N(0, \sigma^2) \). The sample \((x_i, y_i)\) is \((1, 0), (2, 1), (1, 1)\).

(a) Write down the model in matrix form.

(b) We wish to test \(H_0 : \beta_0 = \beta_1 \) versus \(H_a : \beta_0 \neq \beta_1 \). Perform the F-test and report the P value in the form \(P(F_{?, ?} > ?) \). (You need to fill in the ? marks)

Consider the simple linear regression model \(y_i = \beta_0 + \beta_1 x_i + \epsilon_i \) where \(\epsilon_i \) are i.i.d. \(\sim N(0, \sigma^2) \), \(i = 1, 2, \ldots, n \). We wish to test \(H_0 : \beta_1 = 0 \) versus \(H_a : \beta_1 \neq 0 \). There are 2 possible ways to test this: the t-test and the F-test.

(a) Note that the T statistic for the t-test is given by

\[T = \frac{\hat{\beta}_1}{\text{estimated standard error of } \hat{\beta}_1}. \]

Show that the F statistic is the square of the T statistic. (7 marks)

Reminder: You may use without proof that the estimators for the simple linear regression model are \(\hat{\beta}_1 = \frac{s_{xy}}{s_{xx}} \) and \(\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \), where \(s_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \) and \(s_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \). We also know that

\[(X^T X)^{-1} = \begin{pmatrix}
\frac{1}{n} + \frac{\bar{x}^2}{s_{xx}} & -\frac{\bar{x}}{s_{xx}} \\
-\frac{\bar{x}}{s_{xx}} & \frac{1}{s_{xx}}
\end{pmatrix} \]

(b) Explain why both tests would give the same P-value. (3 marks)
The one-way ANOVA model was used to test the effectiveness of 3 fertilizers on the growth of a certain plant. 9 specimens of the plant were divided randomly into 3 groups corresponding to the 3 different treatments. The growth of the plant over a 6 month period is reported below.

\[
\text{Trt1: 1, 2, 3} \quad \text{Trt2: 3, 4, 5} \quad \text{Trt3: 5, 4, 4}
\]

An analysis was carried out in R to see if the number of parameters could be reduced. The output is shown below.

```r
> growth<-c(1,2,3,4,5,5,4,4)
> trt<-as.factor(c("1","1","1","2","2","3","3","3"))
> trt23<-as.factor(c("a","a","a","b","b","b","b","b"))
> trt13<-as.factor(c("a","a","a","b","b","a","a","a"))
> trt12<-as.factor(c("a","a","a","a","a","a","b","b","b"))
> lmfull<-lm(growth~trt)
> lm23<-lm(growth~trt23)
> lm12<-lm(growth~trt12)
> lm13<-lm(growth~trt13)
> lmreduced<-lm(growth~1)

> anova(lm23,lmfull)
          Res.Df RSS Df SumofSq    F   Pr(> F)
1           7 4.8333
2           6 4.6667  1  0.16667 0.2143 0.6597

> anova(lm13,lmfull)
          Res.Df RSS Df SumofSq   F   Pr(> F)
1           7 12.8333
2           6 4.6667  1  8.16667 10.5 0.01768

> anova(lm12,lmfull)
          Res.Df RSS Df SumofSq   F   Pr(> F)
1           7 10.6667
2           6 4.6667  1   6.7143 0.0321

> anova(lmreduced,lm23)
          Res.Df RSS Df SumofSq   F   Pr(> F)
1           8 14.2222
2           7 4.8333  1  9.3889 13.598 0.007782

> anova(lmreduced,lm12)
          Res.Df RSS Df SumofSq   F   Pr(> F)
1           8 14.2222
2           7 10.667  1  3.5556 2.3333 0.1705
```
> anova(lmreduced, lm13)
 Res.Df RSS Df Sum.ofSq F Pr(> F)
 1 8 14.222
 2 7 12.833 1 1.3889 0.7576 0.4129

> anova(lmreduced, lmfull)
 Res.Df RSS Df Sum.ofSq F Pr(> F)
 1 8 14.2222
 2 6 4.6667 2 9.5556 6.1429 0.03533

(a) Write down clearly the models being considered. Draw a nested diagram to show the relationship between the models.

(b) Use hypothesis testing to find the most suitable model. Use size 0.05 for all your tests.

A two-way ANOVA model was used to test the effectiveness of combinations of 3 fertilizers F_1, F_2, F_3 and 2 insecticides I_1, I_2 on the growth of a certain plant. 6 specimens of the plant were randomly assigned to the six possible combinations. The growth of the plant after six months is reported below.

<table>
<thead>
<tr>
<th>Fertilizer</th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecticide</td>
<td>I_1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>I_2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Sketch two suitable plots to illustrate the presence or absence of interaction between the two factors. What do the plots suggest?

End of Question Paper