

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2014–2015

MAS346 Groups and Symmetry

2 hours 30 minutes

Attempt all the questions. The allocation of marks is shown in brackets.

- 1 (i) Let G be a group. Define $\operatorname{Aut}(G)$ and prove that it is a subgroup of the group S(G) of all bijections $f:G\to G$. [You may assume without proof that S(G) is a group under composition of functions.] (6 marks)
 - (ii) Let G be a group. Prove that for $a \in G$ the map $\omega_a : G \to G$ defined by

$$x \mapsto \omega_a(x) := axa^{-1}$$

is an element of $\operatorname{Aut}(G)$ and that the map $\omega_{\bullet}: G \to \operatorname{Aut}(G)$ given by $a \mapsto \omega_a$ is a homomorphism of groups. (5 marks)

- (iii) (a) Prove that $\operatorname{Aut}(\mathbf{Z}/n\mathbf{Z}) \cong (\mathbf{Z}/n\mathbf{Z})^*$. [You may assume that $l_{\bullet}: \mathbf{Z}/n\mathbf{Z} \to \operatorname{Hom}(\mathbf{Z}/n\mathbf{Z}, \mathbf{Z}/n\mathbf{Z})$ defined by $a \mapsto l_a$ is a bijection, where $l_a(x) = ax$ for all $x \in \mathbf{Z}/n\mathbf{Z}$.]

 (6 marks)
 - (b) Express Aut(**Z**/12**Z**) as a direct product of cyclic groups of prime power order. (2 marks)
- (iv) Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group where 1 is the identity of Q and the multiplication is given by the rules:

$$i^2 = j^2 = k^2 = -1$$
, $(-1)a = a(-1) = -a$ for all $a \in Q$,

$$(-1)^2 = 1$$
, $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$.

By considering the order of its elements describe 24 different automorphisms of Q. (6 marks)

- 2 (i) Define the centre Z(G) of a group G and prove that it is a normal subgroup.

 (4 marks)
 - (ii) Give one example each of groups G_1, G_2, G_3 with

$$Z(G_1) = \{e\}, Z(G_2) = G_2 \text{ and } \{e\} \subsetneq Z(G_3) \subsetneq G_3.$$

(3 marks)

- (iii) (a) Define the special orthogonal group SO_2 and the elements R_{θ} , S_{θ} of O_2 . (3 marks)
 - (b) By multiplying out matrices (and quoting relevant trigonometric identities) show that $S_{\theta}S_{\phi} = R_{\theta-\phi}$. (2 marks)
 - (c) For n > 2 let $D_n = \{R_{2\pi/n}^i S_0^j \text{ for } i = 1 \dots n \text{ and } j = 0, 1\}$. Determine $Z(D_n)$, distinguishing between n even and odd. You may use the identities $R_{\theta}R_{\phi} = R_{\theta+\phi}$, $R_{\theta}S_{\phi} = S_{\theta+\phi}$ and $S_{\theta}R_{\phi} = S_{\theta-\phi}$ without proving them.

 (5 marks)
- (iv) Let $\mathbf{F}_3 = \mathbf{Z}/3\mathbf{Z}$ be the field with 3 elements.
 - (a) Calculate the order of the group $SL_3(\mathbf{F}_3)$. (3 marks)
 - (b) Prove that the centre of $SL_3(\mathbf{F}_3)$ is given by

$$\left\{ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \right\}.$$

(5 marks)

- 3 (i) (a) Give the definition of the action of a group G on a set X.

 (3 marks)
 - (b) Given a homomorphism $\phi: G \to S(X)$ explain how to define an action of G on X and prove that it satisfies the necessary axioms.

 (4 marks)
 - (ii) Let H < G be a subgroup. For $g \in G$ and $x \in G$ define g * (xH) = (gx)H.
 - (a) Show that this defines a group action of G on the set G/H of (left) cosets of H. (4 marks)
 - (b) Define the homomorphism $\phi: G \to S(G/H)$ corresponding to the action in (a) and prove that

$$\ker(\phi) = \bigcap_{x \in G} x H x^{-1}.$$

(5 marks)

- (iii) (a) Draw a 2-dimensional shape whose symmetry group is $D_3 \cong S_3$.

 (2 marks
 - (b) Prove that the direct symmetry group Dir(Dodec) of the regular dodecahedron has 60 elements by calculating the size of the orbit and stabilizer of a chosen face.

 (3 marks)
 - (c) Arguing geometrically determine how many conjugacy classes there are in Dir(Dodec) of elements of order 5. [You may assume that all elements of order 5 are given by rotations about axes through centres of faces.]

 (4 marks)
- 4 (i) State the Sylow theorems. You should carefully define all the terms and notation used. (5 marks)
 - (ii) (a) Give the definition of a simple group. (2 marks)
 - (b) Show that there is no simple group of order 224 by considering an appropriate group action. (4 marks)
 - (c) By considering the order of elements show that a group of order p^2q with p,q distinct primes cannot be simple if there are p^2 Sylow q-subgroups.

 (5 marks)
 - (iii) Determine the number of Sylow 3-subgroups of A_5 . (4 marks)
 - (iv) Let G be a group of order p^2q^2 for prime p < q. Prove that if G is not of order 36 then G has a normal q-Sylow subgroup. (5 marks)

End of Question Paper