Vectors and Mechanics

Attempt all the questions. The allocation of marks is shown in brackets. The total number of marks available is 60.

1. Let \(OABC \) be a parallelogram where the midpoints of the lines \(OA, AB \) and \(BC \) are \(L, M \) and \(N \), respectively. Let \(\mathbf{a} = \overrightarrow{OA} \) and \(\mathbf{c} = \overrightarrow{OC} \).

 (i) Express \(\overrightarrow{OL}, \overrightarrow{OM} \) and \(\overrightarrow{ON} \) in terms of \(\mathbf{a} \) and \(\mathbf{c} \).

 (ii) Express \(\overrightarrow{LM} \cdot \overrightarrow{MN} \) in terms of \(|\mathbf{a}| \) and \(|\mathbf{c}| \). \((3 \text{ marks}) \)

2. Relative to the origin \(O \), points \(A \) and \(B \) have position vectors \(\mathbf{a} = 2\mathbf{i} - \mathbf{j} \) and \(\mathbf{b} = \mathbf{i} + 3\mathbf{j} + 3\mathbf{k} \), respectively.

 Find

 (i) the angle in radians between \(\mathbf{a} \) and \(\mathbf{b} \) correct to two decimal places;

 (ii) the component of \(\mathbf{b} \) along \(\mathbf{a} \);

 (iii) \(\mathbf{a} \times \mathbf{b} \);

 (iv) the area of triangle \(AOB \) correct to two decimal places. \((6 \text{ marks}) \)

3. Simplify the following expressions

 (i) \(\mathbf{i} + (\mathbf{j} \times \mathbf{k}) \);

 (ii) \((\mathbf{i} \times \mathbf{k}) \cdot \mathbf{j} \). \((2 \text{ marks}) \)

4. (i) Find a parametric vector equation of line \(L_1 \) which passes through a point with position vector \(3\mathbf{i} - \mathbf{j} - 3\mathbf{k} \) and is in the direction of vector \(-\mathbf{i} + 2\mathbf{j} + 6\mathbf{k} \).

 (ii) Find a parametric vector equation of line \(L_2 \) which passes through points with position vectors \(\mathbf{i} + 2\mathbf{j} + \mathbf{k} \) and \(6\mathbf{i} - 3\mathbf{j} + 11\mathbf{k} \).

 (iii) Find out if \(L_1 \) and \(L_2 \) intersect and, if so, state their point of intersection. \((6 \text{ marks}) \)
A point P with the position vector \mathbf{p} lies on a line L with the parametric vector equation $\mathbf{r} = \mathbf{a} + \lambda \mathbf{c}$ such that $\mathbf{p} \cdot \mathbf{c} = 0$.

(i) Find λ for the position vector \mathbf{p}.

(ii) Assume that the vector equation of line L can also be written in the form $\mathbf{r} \times \mathbf{c} = \mathbf{d}$, where \mathbf{d} is a constant vector. Hence show that $\mathbf{p} = \frac{1}{|\mathbf{c}|^2}(\mathbf{c} \times \mathbf{d})$.

(3 marks)

A projectile is launched from the origin O with speed V at an angle θ above the horizontal. Ignore the effect of air resistance.

If the horizontal and vertical displacements of the projectile at time t are x and z respectively, write down the equations for x and z in terms of V, θ and the acceleration due to gravity g.

Assume an area of ground is completely flat and level with the x-axis. Show that a projectile launched from this ground will have a maximum range when $\theta = \pi/4$. Hence derive an expression for this maximum range in terms of V and g.

(4 marks)

(i) The position of a thrown stone is

$$\mathbf{r}(t) = (1.6 + 12 t) \mathbf{i} + (15 t - 4.9 t^2) \mathbf{j},$$

where the units are m and s as appropriate. Find its velocity and acceleration.

(2 marks)

(ii) A car is travelling east at 72 km h$^{-1}$. It rounds a curve and 5 seconds later it is travelling North at 72 km h$^{-1}$. Find the average acceleration of the car over the 5s.

(5 marks)

(iii) John’s car has a mass of 2000 kg. It is at rest on the road because it runs out of fuel. John then pushes the car exerting a force of 300 N. How long does it take for the car to reach a velocity of 3 m s$^{-1}$?

(4 marks)

(i) One end of a light, taut inextensible string of length L is attached to a fixed point O and a particle P is attached to the other end of the string. The particle moves on a smooth track banked at an angle α to the horizontal. The particle moves in a horizontal circle with O at its centre, so that the string is horizontal. Draw a clear force diagram showing all the forces acting on the particle.

(3 marks)

(ii) Two small beads are threaded on a vertical smooth circular wire. The beads are connected by a light, taut inextensible string which runs round the wire. Draw a clear diagram showing the forces on the two beads.

(4 marks)

(iii) An elastic string of length 1.5 m is stretched to 2 m. If its modulus of elasticity is 12 N, find the tension in the string.

(3 marks)
9 (i) A block of mass 4 kg lies on a rough plane banked at an angle of 30° to the horizontal. The coefficient of friction between the block and the plane is \(\frac{3}{4} \). Show that in the absence of any external force the block does not slip down the plane if it is initially at rest. \((3 \text{ marks}) \)

(ii) What is the smallest force parallel to the plane which can be applied to make the block just begin to move down the plane. \((2 \text{ marks}) \)

(iii) What is the smallest force parallel to the plane which can be applied to make the block just begin to move up the plane. \((2 \text{ marks}) \)

Note: consider acceleration due to gravity to be \(g = 10 \text{ m s}^{-2} \) in Q. 9

10 For each of the following physical quantities, state whether they are vectors or scalars and give their dimensions: (a) Momentum; (b) Power; (c) Stiffness. \((3 \text{ marks}) \)

11 A penny of mass 0.1 kg is placed on a horizontal turntable that is then rotated at a fixed rate of 90 revolutions per minute. The penny is placed on the table at a distance \(r \) from the axis of rotation. If the maximum frictional force between the turntable and the penny is 0.6 N, calculate the maximum distance \(r \) at which the penny would stay on the turntable at this rotation rate. \((5 \text{ marks}) \)

End of Question Paper