MAS140

SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2015–2016

MAS140 Mathematics (Chemical)

3 hours

Attempt **ALL** questions.

Each question in Section A carries 3 marks, each question in Section B carries 8 marks.

All solutions should be justified in full. Calculators should be relied upon only for simple steps like basic arithmetic and plugging numbers into elementary functions.

Section A

A1 Let
$$f(x) = \frac{x}{x+4}$$
. Sketch the curve $y = f(x)$.

A2 Let $f(x) = e^{2x} - 1$. Find $f^{-1}(x)$ and state its domain and range.

A3 If
$$f(x,y) = 4x^2\sqrt{y} + 5\cos(xy)$$
, find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

$${\bf A4}$$
 Evaluate $\lim_{x\to 0}\left(\frac{x\tanh x}{\sin 2x}\right)$ using l'Hôpital's Rule.

A5 Find all the complex numbers z for which |z - 1 - i| = 1 and Re(z) = Im(z).

MAS140 1 Turn Over

A6 If $\mathbf{a} = (7, -2, -5)$ and $\mathbf{b} = (5, 1, 3)$, evaluate $\mathbf{a} \cdot \mathbf{b}$. Find a non-zero vector perpendicular to both \mathbf{a} and \mathbf{b} .

A7 Find the definite integral
$$\int_0^{\pi} (x+1) \sin \frac{x}{2} dx$$
.

A8 Find the indefinite integral $\int x(\cos x^2)^2 dx$.

A9 Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$. Find A^T and B^T and hence show that $(AB)^T = B^T A^T$.

A10 Find the general solution of the differential equation

$$x\frac{dy}{dx} = \frac{e^x}{x^2} - 3y.$$

A11 Find A^{-1} for the matrix $A = \begin{bmatrix} 2 & 4 \\ 1 & -3 \end{bmatrix}$. Use this to solve the simultaneous equations 2x + 4y = 14

$$\begin{array}{rcl} 2x + 4y & = & 14 \\ x - 3y & = & -8. \end{array}$$

A12 Find the general solution of the equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 0$$

such that y = 0 when x = 0.

Section B

- **B1** Find all the stationary points of $f(x,y) = x^4 + y^4 2x^2 + 4xy 2y^2 1$ and show that the stationary points not at (0,0) are minima.
- **B2** By evaluating all the necessary derivatives of $y = \ln(1+x^2)$, find the first 2 non-zero terms of the Maclaurin Series expansion of y. Show that this series can also be obtained from the Maclaurin Series of $y = \ln(1+x)$ given on the Formula Sheet.

- **B3** Find the modulus and principal argument of the complex numbers $z_1 = 1 + i$ and $z_2 = \sqrt{3} + i$. Hence find all complex numbers z that satisfy the equation $z^6 = \frac{z_1}{z_2}$ and plot them on an Argand diagram.
- **B4** The position vector of a particle, $\mathbf{r}(t)$, is given by

$$\mathbf{r}(t) = (2t^2, t^2 - 4t, 3t - 5).$$

- (i) Find the velocity and acceleration vectors of the particle.
- (ii) Find the unit vector in the direction of \mathbf{r} at t=1. Hence show that, in this direction, the component of the velocity is 4 times the component of the acceleration.
- **B5** Evaluate the definite integral

$$\int_{1}^{2} \frac{2t^2 + 3t + 1}{t^3 + t} \, dt$$

writing your answer to 2 decimal places.

B6 Find the value of α for which the following system of equations has infinitely many solutions and then find those solutions.

$$4x - y - z = 2$$

$$2x + \alpha y + z = 4$$

$$x - 2y - 2z = -3$$

For the case $\alpha = -2$, without solving the equations state how many solutions you would expect and write down the solution of the corresponding homogeneous system of equations.

- **B7** Let $A = \begin{bmatrix} 0 & 2 & 4 \\ 1 & 1 & -2 \\ -2 & 0 & 5 \end{bmatrix}$. Find all eigenvalues and eigenvectors of A.
- **B8** Using Laplace Transforms or otherwise, find the solution to the differential equation

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = \sin t$$

subject to the initial conditions y = 0 and $\frac{dy}{dt} = 0$ at t = 0.

End of Question Paper

MAS140/151/152/156 Formula Sheet

These results may be quoted without proof unless proofs are asked for in the questions.

Trigonometry

$$\sin^{2} x + \cos^{2} x = 1$$

$$1 + \tan^{2} x = \sec^{2} x$$

$$1 + \cot^{2} x = \csc^{2} x$$

$$2 \sin^{2} x = 1 - \cos 2x$$

$$2 \cos^{2} x = 1 + \cos 2x$$

$$2 \sin x \cos x = \sin 2x$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$$

$$a \cos x + b \sin x = R \cos(x - \alpha)$$
where $R = \sqrt{a^{2} + b^{2}}$,
$$\cos \alpha = \frac{a}{R} \quad \text{and} \quad \sin \alpha = \frac{b}{R}$$

$$2 \cos x \cos y = \cos(x + y) + \cos(x - y)$$

$$2 \sin x \sin y = \cos(x - y) - \cos(x + y)$$

$$2 \sin x \cos y = \sin(x + y) + \sin(x - y)$$

$$\cos x = \frac{1 - \tan^{2}(x/2)}{1 + \tan^{2}(x/2)}$$

$$\sin x = \frac{2 \tan(x/2)}{1 - \tan^{2}(x/2)}$$

$$\tan x = \frac{2 \tan(x/2)}{1 - \tan^{2}(x/2)}$$

Hyperbolic Functions

$$\sinh x = \frac{1}{2}(e^{x} - e^{-x})$$

$$\cosh x = \frac{1}{2}(e^{x} + e^{-x})$$

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\coth x = \frac{\cosh x}{\sinh x}$$

$$\operatorname{sech} x = \frac{1}{\cosh x}$$

$$\operatorname{cosh}^{2} x - \sinh^{2} x = 1$$

$$2 \operatorname{cosh}^{2} x = 1 + \operatorname{cosh} 2x$$

$$2 \operatorname{sinh}^{2} x = \operatorname{cosh} 2x - 1$$

$$2 \operatorname{sinh} x \operatorname{cosh} x = \sinh 2x$$

$$\operatorname{sech}^{2} x = 1 - \tanh^{2} x$$

$$\operatorname{sinh}^{-1} x = \ln(x + \sqrt{x^{2} + 1}), \text{ all } x$$

$$\operatorname{cosh}^{-1} x = \ln(x + \sqrt{x^{2} - 1}), x \ge 1$$

$$\tanh^{-1} x = \frac{1}{2} \ln\left(\frac{1 + x}{1 - x}\right), |x| < 1$$

Series

Sum of an arithmetic series:

$$\frac{\text{first term } + \text{ last term}}{2} \times (\text{number of terms})$$

Sum of a geometric series: $1 + x + x^2 + \ldots + x^{n-1} = \frac{1 - x^n}{1 - x}$

Binomial theorem:
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \binom{n}{r}x^r + \dots$$
where $\binom{n}{r} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}$

If n is a positive integer then the series terminates and the result is true for all x, otherwise, the series is infinite and only converges for |x| < 1.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$$

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$

$$\exp x = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \quad (-1 < x \le 1)$$

$\underline{\text{Differentiation}}$

<u>Function</u>	<u>Derivative</u>	<u>Function</u>	<u>Derivative</u>
$\sin x$	$\cos x$	$\cos x$	$-\sin x$
$\tan x$	$\sec^2 x$	$\cot x$	$-\csc^2 x$
$\sin^{-1} x$	$\frac{1}{\sqrt{1-x^2}},\ x <1$	$\cos^{-1} x$	$-\frac{1}{\sqrt{1-x^2}},\ x <1$
$\tan^{-1} x$	$\frac{1}{1+x^2}$	$\cot^{-1} x$	$-\frac{1}{1+x^2}$
$\sinh x$	$\cosh x$	$\cosh x$	$\sinh x$
$\tanh x$	$\frac{1}{\cosh^2 x}$	$\coth x$	$-\frac{1}{\sinh^2 x}$
$\sinh^{-1} x$	$\frac{1}{\sqrt{x^2+1}}$	$\cosh^{-1} x$	$\frac{1}{\sqrt{x^2 - 1}}, x > 1$
$\tanh^{-1} x$	$\frac{1}{1 - x^2} , \ x < 1$		
$\coth^{-1} x$	$\frac{1}{1-x^2}, x > 1$		

Integration

In the following table the constants of integration have been omitted.

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1) \qquad \qquad \int \frac{dx}{x} = \ln|x|$$

$$\int e^x \, dx = e^x \qquad \qquad \int a^x \, dx = \frac{a^x}{\ln a} \quad (a > 0, \ a \neq 1)$$

$$\int \sin x \, dx = -\cos x \qquad \qquad \int \cos x \, dx = \sin x$$

$$\int \sec^2 x \, dx = \tan x \qquad \qquad \int \cosh x \, dx = \sinh x$$

$$\int \sinh x \, dx = \cosh x \qquad \qquad \int \cosh x \, dx = \sinh x$$

$$\int \cosh^2 x \, dx = \tanh x \qquad \qquad \int \cosh^2 x \, dx = -\coth x$$

$$\int \frac{dx}{\sqrt{x^2 - x^2}} = \sin^{-1} \frac{x}{a} \quad (|x| < a) \qquad \qquad \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a}$$

$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \sinh^{-1} \frac{x}{a} \qquad \qquad \int \frac{dx}{\sqrt{x^2 - a^2}} = \cosh^{-1} \frac{x}{a} \quad (|x| > a)$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| \quad (= \tanh^{-1} \frac{x}{a} \quad \text{if } |x| < a)$$

$$\int \csc x \, dx = \ln \tan \left(\frac{x}{2} \right) \quad \text{or} \quad \ln \left(\csc x + \tan x \right)$$

$$\int \operatorname{cosech} x \, dx = \ln \tan \left(\frac{x}{2} \right) \quad \text{or} \quad \ln \left(\sec x + \tan x \right)$$

$$\int \operatorname{cosech} x \, dx = \ln \tanh \left(\frac{x}{2} \right)$$

Integration by parts

$$\int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx$$

Variable substitution in definite integral

If $x = \varphi(t)$ is a monotonic function in the interval $[\alpha, \beta]$ and $a = \varphi(\alpha)$, $b = \varphi(\beta)$, then

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$$

Variable substitution for a rational function of sin x and cos x

Let
$$t = \tan\left(\frac{x}{2}\right)$$
 then $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$ and $\frac{dx}{dt} = \frac{2}{1+t^2}$.

Table of Laplace transforms

Function $f(t)$	Laplace transform $F(s)$		
t^n	$\frac{n!}{s^{n+1}}$ (for $n = 0, 1, 2,$)		
e^{at}	$\frac{1}{s-a}$		
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$		
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$		
$\sinh \omega t$	$\frac{\omega}{s^2 - \omega^2}$		
$\cosh \omega t$	$\frac{s}{s^2 - \omega^2}$		
$e^{at}f(t)$	F(s-a) (shift theorem)		
f'(t)	sF(s) - f(0)		
f''(t)	$s^2 F(s) - s f(0) - f'(0)$		