SCHOOL OF MATHEMATICS AND STATISTICS

MAS420 Signal Processing

Attempt all FOUR questions.

1 (i) You are given that the set $\phi_n(t) = e^{i\sigma t} : -\infty < n < \infty$, where $\sigma = \frac{2\pi}{T}$, forms an orthonormal basis for the Hilbert space of finite power signals of period T with inner product

$$ (f, g) = \frac{1}{T} \int_{-T/2}^{T/2} f(t)g^*(t) \, dt. $$

Prove Parseval's theorem

$$ \|f\|^2 = \sum_{n=-\infty}^{n=\infty} |c_n|^2, $$

where $c_n = (f, \phi_n)$.

(4 marks)

(ii) Find the complex Fourier coefficients for the periodic signal $f(t)$, where $f(t) = t$ for $-\pi \leq t < \pi$ and $f(t + 2\pi) = f(t)$.

(7 marks)

(iii) Use Parseval's theorem and your result in (ii) to derive the equality

$$ \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. $$

(5 marks)

(iv) The signal is transmitted over a link which will not pass frequencies greater than $\frac{\pi}{2}$ rad s$^{-1}$, but passes other frequencies unchanged. The received signal is $g(t)$. Find an expression for $g(t)$ as a sine/cosine series and calculate the percentage of the power that is lost during transmission.

(9 marks)
Prove the convolution theorem

\[f \ast g(t) \leftrightarrow F(\omega)G(\omega), \]

where \(f(t) \) and \(g(t) \) are signals with Fourier transforms \(F(\omega) \) and \(G(\omega) \) respectively. \(\text{(4 marks)} \)

Use the convolution theorem to evaluate

\[g(t) = \text{sinc}(\Omega(t - t_0)) \ast \text{sinc}(\Psi(t - t_1)) \]

for \(\Psi > \Omega \). \(\text{(6 marks)} \)

(iii) (a) Define the following:

- a linear shift invariant (LSI) system;
- the system transfer function (STF), without any reference to the Fourier transform or the impulse response function;
- the impulse response function (IRF), without reference to the STF or convolution.

\(\text{(4 marks)} \)

(b) A system, \(S \), uses integration to smooth noisy signals, i.e. if the input signal is \(k(t) \), the output is given by

\[g_{out}(t) = \int_{t-T}^{t} k(s) \, ds, \]

where \(T \) is a constant.

(\(\alpha \)) You are given that \(S \) is linear and shift-invariant. Verify that its STF is given by

\[H(\omega) = Te^{-iT\omega/2} \text{sinc} \left(\frac{T\omega}{2} \right). \]

\(\text{(3 marks)} \)

(\(\beta \)) Find the impulse response function, \(h(t) \), that corresponds to \(S \). \(\text{(2 marks)} \)

(\(\gamma \)) Use the STF to find the output from the system if the input is

\[k(t) = 1 + 4\sin \frac{\pi t}{T} + \cos \frac{2\pi t}{T}, \]

simplifying your answer as much as possible. \(\text{(6 marks)} \)
3 (i) If \(f(t) \) has a real, non-negative Fourier transform, \(F(\omega) \), prove that \(f(0) \geq 0 \) and \(|f(t)| \leq f(0) \) for any \(t \).

(4 marks)

(ii) Define the equivalent rectangle resolution, \(\tau \), of a signal, \(f(t) \), stating clearly the conditions under which it is defined. Explain, using a clear diagram, how it is related to the signal \(f(t) \).

(5 marks)

(iii) Consider the signal \(f(t) = 5\text{sinc}^2(6t) \). Calculate and sketch the signal spectrum \(F(\omega) \).

For the signal \(f(t) \), find
(a) its bandwidth, \(\Omega \) (rad/s),
(b) its energy, and
(c) the equivalent rectangle resolution, \(\tau \).

Verify that for this signal \(\tau \Omega > \pi \).

(4 marks)

The signal is passed through a low-pass filter with system transfer function \(H(\omega) = \rho_0(\omega) \) to produce the signal \(g(t) \). Calculate the ratio of the energy of \(g(t) \) to the original signal, \(f(t) \).

(5 marks)

4 (i) Assuming the Fourier transform pair \(\delta_T(t) \leftrightarrow \sigma \delta_\sigma(\omega) \), where \(\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT) \), \(\delta_\sigma(\omega) \) is defined similarly and \(\sigma = 2\pi/T \), prove that

\[
 f_S(t) = f(t) \delta_T(t) \leftrightarrow \frac{1}{T} \sum_{n=-\infty}^{\infty} F(\omega - n\sigma),
\]

where \(F(\omega) \) is the Fourier transform of \(f(t) \).

(5 marks)

(ii) Using the previous result, show that if \(f(t) \) is \(\Omega \)-bandlimited and \(T < \pi/\Omega \), then \(f(t) \) can be recovered exactly from the sampled signal \(f_S(t) \) by the sinc interpolation formula

\[
 f(t) = \sum_{n=-\infty}^{\infty} f(nT) \text{sinc} \left\{ \frac{\sigma}{2}(t-nT) \right\}.
\]

Clear diagrams are likely to help your answer.

(6 marks)

(iii) Find the Nyquist frequency, in Hz, of the signal

\[f(t) = \text{sinc}^2(8t). \]

(4 marks)

(iv) This signal is sampled at 3/4 of the Nyquist frequency and the samples are used to form a signal \(g(t) \) by sinc interpolation. Making use of clear diagrams, find \(G(\omega) \) and hence \(g(t) \).

(10 marks)

End of Question Paper
Function Definitions:

Rectangular pulse:
\[p_a(t) = \begin{cases}
1 & |t| \leq a \\
0 & |t| > a
\end{cases} \]

Triangular pulse:
\[q_a(t) = \begin{cases}
1 - |t|/a & |t| \leq a \\
0 & |t| > a
\end{cases} \]

Step function:
\[U(t) = \begin{cases}
1 & t \geq 0 \\
0 & t < 0
\end{cases} \]

Fourier Transform Pairs:
\[
\begin{align*}
p_a(t) & \leftrightarrow 2a \text{sinc}(aw) \\
q_a(t) & \leftrightarrow a \text{sinc}^2(aw/2) \\
\text{sinc}(at) & \leftrightarrow \frac{\pi}{a} p_a(\omega) \\
\text{sinc}^2(at) & \leftrightarrow \frac{\pi}{a} q_a(\omega) \\
e^{-at}U(t) & \leftrightarrow \frac{1}{a+\text{i}\omega} \\
\delta(t) & \leftrightarrow 1 \\
\delta(t-t_0) & \leftrightarrow e^{-\text{i}\omega t_0} \\
1 & \leftrightarrow 2\pi \delta(\omega) \\
e^{\text{i}\omega t} & \leftrightarrow 2\pi \delta(\omega - \omega_0) \\
e^{-t^2/\sigma^2} & \leftrightarrow \sigma \sqrt{2\pi} e^{-\omega^2/2\sigma^2}
\end{align*}
\]

Fourier transform:
\[F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-\text{i}\omega t} \, dt \]

Inverse Fourier transform:
\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{\text{i}\omega t} \, d\omega \]

Duality theorem: If \(f(t) \leftrightarrow F(\omega) \) then \(F(t) \leftrightarrow 2\pi f(-\omega) \)

Scaling: If \(f(t) \leftrightarrow F(\omega) \) then \(f(at) \leftrightarrow \frac{1}{|a|} F(\omega/a) \).

Translation: If \(f(t) \leftrightarrow F(\omega) \) then \(f(t-t_0) \leftrightarrow e^{-\text{i}\omega t_0} F(\omega) \).

Frequency Shift: If \(f(t) \leftrightarrow F(\omega) \) then \(e^{\text{i}\omega_0 t} f(t) \leftrightarrow F(\omega - \omega_0) \).
Fourier Series: If $f_T(t)$ is periodic with period T then, with $\sigma = 2\pi / T$, the complex Fourier series is

$$f_T(t) = \sum_{n=-\infty}^{\infty} c_n e^{i n \sigma t}$$

where

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} f_T(t) e^{-i n \sigma t} \, dt$$

Likewise, the real Fourier series is

$$f_T(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos n \sigma t + b_n \sin n \sigma t \right)$$

where

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f_T(t) \cos n \sigma t \, dt$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f_T(t) \sin n \sigma t \, dt$$

Parseval's Theorem: If V is a Hilbert space, $\{\phi_n\}$ is an orthonormal basis for V and $f = \sum_n c_n \phi_n$, then

$$\|f\|^2 = \sum_{n=-\infty}^{\infty} |c_n|^2$$

Plancherel's Theorem: If $f(t) \longleftrightarrow F(\omega)$ and $g(t) \longleftrightarrow G(\omega)$ then

$$\int_{-\infty}^{\infty} f(t) g^*(t) \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) G^*(\omega) \, d\omega$$

Energy Theorem: If $f(t) \longleftrightarrow F(\omega)$ then

$$\int_{-\infty}^{\infty} |f(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 \, d\omega$$

Convolution Theorem: If $f(t) \longleftrightarrow F(\omega)$ and $g(t) \longleftrightarrow G(\omega)$ then

$$f * g(t) = \int_{-\infty}^{\infty} f(s) g(t-s) \, ds \longleftrightarrow F(\omega) G(\omega)$$

Product Theorem: If $f(t) \longleftrightarrow F(\omega)$ and $g(t) \longleftrightarrow G(\omega)$ then

$$f(t) g(t) \longleftrightarrow \frac{1}{2\pi} F(\omega) * G(\omega).$$