Mathematical Methods

Marks will be awarded for your best FOUR answers. The marks awarded to each question or section of question are shown in italics.

1. The Fourier transform, $\hat{f}(k)$, of a function $f(x)$ is defined by

$$\hat{f}(k) = \mathcal{F} \{ f(x) \} = \int_{-\infty}^{\infty} e^{ikx} f(x) \, dx.$$

(a) Using the above definition, derive the result

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ikx} \hat{f}(k) \, dk. \quad (8 \text{ marks})$$

You may assume that $\int_{-\infty}^{\infty} e^{ikx} \, dk = 2\pi \delta(x)$.

(b) Show that the Fourier transform of

$$f(x) = x \, e^{-|k|}$$

is given by

$$\hat{f}(k) = \frac{4ik}{(1 + k^2)^2}. \quad (10 \text{ marks})$$

By applying the inverse Fourier transform to $\hat{f}(k)$, deduce that for real x

$$\int_{0}^{\infty} \frac{k \sin kx}{(1 + k^2)^2} \, dk = \frac{\pi}{4} x \, e^{-|k|}. \quad (7 \text{ marks})$$
The function $x(t)$ satisfies the ordinary differential equation

$$\ddot{x} + 2\dot{x} + 2x = f(t)$$

for $t \geq 0$, for some function $f(t)$, with $x(0) = -1$ and $\dot{x}(0) = 3$.

(a) Taking the Laplace transform of the equation, find $\tilde{x}(s)$ in terms of $\tilde{f}(s)$, where the Laplace transform $\tilde{x}(s)$ is defined by

$$\tilde{x}(s) = \int_0^\infty e^{-st} x(t) \, dt,$$

and $\tilde{f}(s)$ is defined similarly. (5 marks)

Hence derive the solution

$$x(t) = e^{-t}(2\sin t - \cos t) + \int_0^t f(u) e^{-(t-u)} \sin(t-u) \, du. \quad (5 \text{ marks})$$

You may assume that the following hold:

$$\begin{align*}
\mathcal{L} \{x^{(n)}(t)\} &= s^n \tilde{x}(s) - s^{n-1} x(0) - s^{n-2} \dot{x}(0) - \cdots - x^{(n-1)}(0) \\
\mathcal{L} \{e^{at} g(t)\} &= \tilde{g}(s-a) \\
\mathcal{L} \{\sin \omega t\} &= \frac{\omega}{s^2 + \omega^2} \quad \text{and} \quad \mathcal{L} \{\cos \omega t\} = \frac{s}{s^2 + \omega^2} \\
\mathcal{L} \left\{ \int_0^t f(u) g(t-u) \, du \right\} &= \tilde{f}(s)\tilde{g}(s),
\end{align*}$$

where $\mathcal{L} \{\cdot\}$ denotes the Laplace transform.

(b) Use the result of part (a) to find the solution $x(t)$ when $f(t) = e^{2t}$. (8 marks)

Verify that this solution does satisfy the differential equation and the initial conditions. (7 marks)
3. The function \(y(x) \) satisfies the ordinary differential equation

\[
y'' - y = \ln(1 + x) \quad 0 \leq x \leq 1, \tag{1}
\]

with the boundary conditions

\[
y = 0 \quad \text{at } x = 0 \quad \text{and at } x = 1.
\]

(a) Find the independent solutions of

\[
y'' - y = 0. \tag{3 \text{ marks}}
\]

(b) Given that Green’s function \(G(x; \xi) \) for the boundary-value problem given at the beginning of the question is continuous at \(x = \xi \), and that \(\frac{\partial G}{\partial x} \) has a discontinuity of size 1 at \(x = \xi \), show that

\[
G(x; \xi) = \begin{cases}
\frac{\sinh(\xi - 1) \sinh x}{\sinh 1} & 0 \leq x < \xi, \\
\frac{\sinh \xi \sinh(x - 1)}{\sinh 1} & \xi < x \leq 1.
\end{cases} \tag{14 \text{ marks}}
\]

(c) Use Green’s function to write down the solution to equation (1) and the boundary conditions given at the beginning of the question (do NOT attempt the \(\xi \) integrals). \tag{3 \text{ marks}}

Use this to find \(y'(x) \), and hence to show that

\[
y'(0) = \frac{1}{\sinh 1} \int_0^1 \sinh(\xi - 1) \ln(1+\xi) \, d\xi. \tag{5 \text{ marks}}
\]
Consider the equation

$$\varepsilon x^3 - 2x^2 + 18 = 0,$$

where ε is a constant satisfying $0 < \varepsilon \ll 1$.

(a) The solution can be written as

$$x = \frac{1}{\varepsilon} \left(x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \varepsilon^3 x_3 + \cdots \right),$$

where x_0, x_1, x_2, \ldots are $O(1)$ as $\varepsilon \to 0$.

Substitute into equation (2) to derive the solutions for x, correct to order ε as $\varepsilon \to 0$. \hspace{1cm} (19 marks)

(b) Given the rearrangement

$$x = \frac{2}{\varepsilon} \left(1 - \frac{9}{x^2} \right),$$

of (2), use iteration to find the solution close to $\frac{2}{\varepsilon}$, correct to order ε^3 as $\varepsilon \to 0$. \hspace{1cm} (6 marks)
The exponential integral is defined by

\[E(x) = \int_1^\infty t^{-1} e^{-xt} \, dt \quad \text{for} \quad x > 0. \]

(a) Show, by changing variables, that

\[e^x E(x) = \int_0^\infty \frac{e^{-xv}}{1 + v} \, dv. \quad (3 \text{ marks}) \]

Use the sum of a geometric progression to show that

\[\frac{1}{1 + v} = 1 - v + v^2 - v^3 + \cdots + (-v)^{n-1} + \frac{(-v)^n}{1 + v}. \quad (3 \text{ marks}) \]

By using the above results and considering

\[I_n(x) = \int_0^\infty v^n e^{-xv} \, dv \quad \text{for} \quad n = 0, 1, 2, \ldots \]

deduce that

\[e^x E(x) = \frac{1}{x} - \frac{1}{x^2} + \frac{2}{x^3} - \frac{6}{x^4} + \cdots + \frac{(-1)^{n-1}(n - 1)!}{x^n} + R_n(x), \]

where

\[R_n(x) = (-1)^n \int_0^\infty \frac{v^n e^{-xv}}{1 + v} \, dv. \quad (11 \text{ marks}) \]

(b) By considering

\[\left| \frac{R_n(x)}{(-1)^{n-1}(n-1)!} \right| \]

as \(x \to \infty \), show that \(E(x) \) has the asymptotic series

\[E(x) \sim e^{-x} \left(\frac{1}{x} - \frac{1}{x^2} + \frac{2}{x^3} - \frac{6}{x^4} + \cdots + \frac{(-1)^n n!}{x^{n+1}} + \cdots \right) \]

as \(x \to \infty \). \quad (8 \text{ marks})