SCHOOL OF MATHEMATICS AND STATISTICS
Spring Semester 2016–2017
Sampling Theory and Design of Experiments 2 hours

Candidates may bring to the examination a calculator that conforms to University regulations. Answer all questions. Total marks 60.

Please leave this exam paper on your desk
Do not remove it from the hall
Registration number from U-Card (9 digits)
to be completed by student

☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
A trial is designed to compare the effectiveness of three drugs numbered 1, 2 and 3. There are nine participants in total in the trial. Three participants are given Drug 1, three are given Drug 2 and three and given Drug 3. The following model is proposed

\[EY_{ij} = \mu + \alpha_i, \]

where \(Y_{ij} \) is the response of the \(j \)th participant given \(i \) for \(1 \leq i, j \leq 3 \).

(a) Write down the design matrix \(X \) for this design with parameters \(\mu, \alpha_1, \alpha_2, \alpha_3 \) and explain what is wrong with this parameterisation. \((3 \text{ marks}) \)

(b) By applying the constraint \(\alpha_1 + \alpha_2 + \alpha_3 = 0 \) write down the design matrix with parameters \(\mu, \alpha_1, \alpha_2 \). \((2 \text{ marks}) \)

(c) Suppose instead that there are \(m \) participants in total of which \(t \) are given the Drug 1, \(t \) are given Drug 2 and \(m - 2t \) are given Drug 3. For the model \(EY_{ij} = \mu + \alpha_i \) for \(i, j = 1, 2, 3 \) with constraint \(\alpha_1 + \alpha_2 + \alpha_3 = 0 \) find \(X^T X \) in terms of \(m \) and \(t \), where \(X \) is the design matrix. \((4 \text{ marks}) \)

(d) Given that \(|X^T X| = 9t^2(m - 2t) \) find the integer value of \(t \) that gives a \(D \)-optimal design for \(m = 1000 \). \((5 \text{ marks}) \)

(ii) Consider a fractional factorial design with 4 factors \((x_1, x_2, x_3, x_4) \) each of which occurs at two levels, denoted \(+1\) and \(-1\).

(a) Suppose that four design points are available. Provide two design generators that allow the intercept and the main effects for \(x_1, x_2 \) and \(x_4 \) to be included in the linear model without confounding. Show the alias structure for these two generators. \((3 \text{ marks}) \)

(b) Construct the fractional factorial design using your design in part (ii)(a). \((3 \text{ marks}) \)
An investigator is studying the dependence of a variable Y on a continuous explanatory variable x which has been scaled to lie between -1 and 1. Each observation is independently subject to a measurement error with mean 0 and variance σ^2. The following model is proposed for the ith observation

$$EY_i = \beta_0 + \beta_1 x_i^3.$$

The investigator proposes to use the four design points $\{x_1, x_2, x_3, x_4\} = \{-1, 0, 1, 1\}$. Denote the response for these design points Y_1, Y_2, Y_3, Y_4 respectively.

(i) If X is the design matrix show that

$$(X^T X)^{-1} = \frac{1}{11} \begin{pmatrix} 3 & -1 \\ -1 & 4 \end{pmatrix}$$

and hence give the variances of the least squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ in terms of σ^2 for this design.

(3 marks)

(ii) The investigator thinks the 95% confidence region for $(\hat{\beta}_0, \hat{\beta}_1)^T$ will be an ellipse (rather than a circle) with major and minor axes parallel to the co-ordinate axes. Justify whether they are correct.

(2 marks)

(iii) Derive the cartesian co-ordinates of the centre of the 95% confidence region for $(\hat{\beta}_0, \hat{\beta}_1)^T$ in terms of Y_1, Y_2, Y_3, Y_4.

(4 marks)

(iv) Show that for the model $EY_i = \beta_0 + \beta_1 x_i^3$, the design $\{x_1, x_2, x_3, x_4\} = \{-1, 0, 1, 1\}$ is neither D-optimal nor G-optimal, by using the General Equivalence Theorem.

(6 marks)

(v) Suppose a design point x_0 is to be removed from a design ξ with information matrix G. Let G^* be the information matrix of the design ξ with x_0 removed and $f(x_0)^T$ be the row of the design matrix for ξ corresponding to point x_0. Show that $|G^*| = |G| (1 - f(x_0)^T G^{-1} f(x_0))$. You may find the following result useful.

If A is a non-singular $p \times p$ matrix, B is a $p \times n$ matrix, C is a $n \times p$ matrix and I is the $n \times n$ identity matrix, then $|A - BC| = |A||I - CA^{-1}B|$.

(3 marks)

(vi) The investigator is to remove a point from the current design $\{x_1, x_2, x_3, x_4\} = \{-1, 0, 1, 1\}$ for the model $EY_i = \beta_0 + \beta_1 x_i^3$. Justify the D-optimal choice of point to remove from this design.

(2 marks)
A survey conducted to estimate the mean annual spend on organic food by postgraduate students at Sheffield University produced the following data

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Population size</th>
<th>Sample size</th>
<th>std. dev. (£)</th>
<th>mean (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>30</td>
<td>32</td>
<td>450</td>
</tr>
<tr>
<td>2</td>
<td>2000</td>
<td>50</td>
<td>20</td>
<td>300</td>
</tr>
</tbody>
</table>

(i) Estimate the mean annual spend on organic food by postgraduate students at Sheffield University using the best linear unbiased estimator \(\bar{x}_{st} \).

\[(2 \text{ marks}) \]

(ii) Estimate a 95% confidence interval for the population mean using \(\bar{x}_{st} \). State any assumptions you make.

\[(5 \text{ marks}) \]

(iii) Another survey is to be conducted with the same strata. If the sampling costs are such that the total sample size is now 250, specify the sample sizes in each stratum using each of the following methods

(a) Neyman allocation;

\[(3 \text{ marks}) \]

(b) minimising the variance of \(\bar{x}_{st} \), subject to a fixed total cost but unequal strata sampling costs: a student from stratum 2 is twice as expensive to sample as a student from stratum 1.

\[(4 \text{ marks}) \]

(iv) Suppose the surveyor chose the stratum sample sizes by minimising the variance of \(\bar{x}_{st} \), subject to a fixed total cost but decided that a student from stratum 2 was \(k \) times as expensive to sample as a student from stratum 1. If the surveyor allocated equal sample sizes to strata 1 and 2, what value of \(k \) did they assume?

\[(2 \text{ marks}) \]

(v) Suppose instead that simple random sampling is to be used. A pilot study using simple random sampling surveyed 10 students and gave the following data (where \(x_i \) is the \(i \)th Sheffield postgraduate student annual spend on organic food in £)

\[\sum_{i=1}^{10} x_i = 2800 \quad \sum_{i=1}^{10} x_i^2 = 1,110,250 \]

Using the data from the pilot study what sample size is needed for the width of the 95% confidence interval for the annual spend on organic food to be no more than £5.

\[(4 \text{ marks}) \]

End of Question Paper
1 Design Formulae

Linear Model formulae

\[\hat{\beta} = (X^T X)^{-1} X^T Y \quad \text{and} \quad \hat{\beta} \sim N(\beta, \sigma^2 (X^T X)^{-1}) \]

Prediction Variance

\[\text{var} \; \hat{y}(x_0) = \sigma^2 f(x_0)^T (X^T X)^{-1} f(x_0) \]

Standardized Prediction Variance

\[d(x) = nf(x)^T (X^T X)^{-1} f(x) = f(x)^T M^{-1} f(x) \]

Confidence Regions, \(\sigma^2 \) unknown

\[p^{-1} \hat{\sigma}^{-2} (\hat{\beta} - \beta)^T X^T X (\hat{\beta} - \beta) \text{ has an } F_{p,n-p} \text{ distribution, provided } n > p \]

Balanced Incomplete Block Design Notation

- \(t \) = number of treatments
- \(k \) = number of units in a block
- \(b \) = number of blocks
- \(r \) = number of applications of each treatment
- \(\lambda \) = number of times each pair of treatments appears together in a block

Balanced Incomplete Block Design Relationships

- \(t > k \)
- \(bk = rt \)
- \(r(k-1) = \lambda(t-1) \)

Balanced Incomplete Block Design - Unreduced Design

\[b = \binom{t}{k} \quad r = \binom{t-1}{k-1} \quad \lambda = \binom{t-2}{k-2} \]

Efficiency of Balanced Incomplete Block Design compared to a Randomized Block design

\[\frac{1 - t^{-1}}{1 - k^{-1}} \]

Adding an extra point \(x \)

\[|G^*| = |G| \left(1 + f(x)^T G^{-1} f(x)\right) \]

Deleting an existing point \(x \)

\[|G^*| = |G| \left(1 - f(x)^T G^{-1} f(x)\right) \]

Adding a new point \(y \) and deleting an existing point \(x \)

\[|G_2| = |G| \left\{ (1 - f(x)^T G^{-1} f(x)) \left[1 + f(y)^T G^{-1} f(y) \right] + (f(x)^T G^{-1} f(y))^2 \right\} \]
2 Sample Surveys and Computer Experiments Formulae

Population variance

\[S^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2 = \frac{1}{N-1} \left(\sum_{i=1}^{N} X_i^2 - N\bar{X}^2 \right) \]

and for a binary characteristic \((X_i = 1 \text{ or } 0 \text{ for each } i)\),

\[S^2 = \frac{NP(1-P)}{N-1} \]

Variance of sample mean for simple random sampling

\[\text{var } \bar{x} = \left(1 - \frac{n}{N} \right) \frac{S^2}{n} \]

Sample size to achieve given confidence interval width for simple random sampling

\[n \geq \frac{N}{1 + N(d/(2Sz_{\alpha/2}))^2} \]

Stratified estimate of population mean and its variance

\[\bar{x}_{st} = \frac{1}{N} \sum_{i=1}^{l} N_i \bar{x}_i \text{ and } \text{var } \bar{x}_{st} = \sum_{i=1}^{l} \left(\frac{N_i}{N} \right)^2 \frac{1 - f_i}{n_i} S_i^2. \]

Optimal allocation

\[n_i \propto \frac{N_i S_i}{\sqrt{c_i}} \]

Neyman allocation

\[n_i = \frac{n N_i S_i}{\sum_{i=1}^{l} N_i S_i} \]

Cluster estimate of population mean and its variance

\[\bar{x}_{cl} = \frac{1}{lK} \sum_{i=1}^{l} \sum_{j=1}^{K} x_{ij} \text{ and } \text{var } \bar{x}_{cl} = \frac{1 - f}{L - 1} \frac{1}{l} \sum_{i=1}^{l} (\bar{X}_i - \bar{X})^2 \]

Regression estimator of population mean and its variance

\[\bar{x}_{lr} = \bar{x} - \hat{\beta}(\bar{y} - \bar{Y}) \text{ and } \text{var } \bar{x}_{lr} \approx \frac{1 - n \rho^2}{n} S_X^2 (1 - \rho^2) \]

Approximate variance of the Peterson estimator, Chapman estimator and approximate variance

\[n: \text{ size of 1st sample, } m: \text{ size of 2nd sample.} \]

\[\hat{\text{Var}}(\hat{N}_p) = \frac{mn^2(m - r)}{r^2}, \]

\[\hat{N}_c = \frac{(n + 1)(m + 1)}{r + 1} - 1, \]

\[\hat{\text{Var}}(\hat{N}_c) = \frac{(n + 1)(m + 1)(n - r)(m - r)}{(r + 1)^2(r + 2)}. \]

Variance identity

\[\text{Var}(Y) = \text{Var}_X \{E(Y|X)\} + E_X \{\text{Var}(Y|X)\}. \]
Tables of Percentage Points (also known as Quantiles or Critical Values) for Three Standard Distributions

The tables contain values of quantiles q such that $P[X \leq q] = p$ for various probabilities p when X has the specified distribution (which may depend on particular degrees of freedom ν). In these tables, p has been expressed as a percentage rather than a decimal. The relevant R commands for generating the q are also shown. For the $N(0,1)$ distribution, the tabulated function is also known as the Φ^{-1} function.

STANDARD NORMAL DISTRIBUTION PERCENTAGE POINTS

<table>
<thead>
<tr>
<th>$q_{\text{norm}}(p)$ where p is percentage, e.g. for 95%, $p = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.0% 66.7% 75.0% 80.0% 87.5% 90.0% 95.0% 97.5% 99.0% 99.5% 99.9%</td>
</tr>
<tr>
<td>q_{norm}</td>
</tr>
</tbody>
</table>

CHI-SQUARED PERCENTAGE POINTS

<table>
<thead>
<tr>
<th>$q_{\text{chisq}}(p, \nu)$ where p is percentage, e.g. for 95%, $p = 0.95$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
STUDENT'S t PERCENTAGE POINTS

 qt(\(p, \nu\)) where \(p\) is percentage, e.g. for 95%, \(p = 0.95\)

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>60.0%</th>
<th>66.7%</th>
<th>75.0%</th>
<th>80.0%</th>
<th>87.5%</th>
<th>90.0%</th>
<th>95.0%</th>
<th>97.5%</th>
<th>99.0%</th>
<th>99.5%</th>
<th>99.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.325</td>
<td>0.577</td>
<td>1.000</td>
<td>1.376</td>
<td>2.414</td>
<td>3.078</td>
<td>6.314</td>
<td>12.706</td>
<td>31.821</td>
<td>63.657</td>
<td>318.31</td>
</tr>
<tr>
<td>2</td>
<td>0.289</td>
<td>0.560</td>
<td>0.816</td>
<td>1.061</td>
<td>1.604</td>
<td>1.866</td>
<td>3.143</td>
<td>6.010</td>
<td>12.403</td>
<td>26.118</td>
<td>636.62</td>
</tr>
<tr>
<td>3</td>
<td>0.277</td>
<td>0.476</td>
<td>0.676</td>
<td>0.898</td>
<td>1.423</td>
<td>1.638</td>
<td>2.353</td>
<td>4.061</td>
<td>7.453</td>
<td>14.089</td>
<td>3.485</td>
</tr>
<tr>
<td>4</td>
<td>0.271</td>
<td>0.464</td>
<td>0.647</td>
<td>0.840</td>
<td>1.344</td>
<td>1.533</td>
<td>2.132</td>
<td>3.747</td>
<td>6.843</td>
<td>12.833</td>
<td>2.676</td>
</tr>
<tr>
<td>5</td>
<td>0.267</td>
<td>0.457</td>
<td>0.624</td>
<td>0.794</td>
<td>1.279</td>
<td>1.476</td>
<td>2.015</td>
<td>3.440</td>
<td>6.472</td>
<td>11.580</td>
<td>2.000</td>
</tr>
<tr>
<td>6</td>
<td>0.265</td>
<td>0.453</td>
<td>0.609</td>
<td>0.756</td>
<td>1.228</td>
<td>1.414</td>
<td>1.902</td>
<td>3.250</td>
<td>6.172</td>
<td>10.408</td>
<td>1.533</td>
</tr>
<tr>
<td>7</td>
<td>0.263</td>
<td>0.449</td>
<td>0.597</td>
<td>0.729</td>
<td>1.189</td>
<td>1.368</td>
<td>1.808</td>
<td>3.085</td>
<td>5.937</td>
<td>9.401</td>
<td>1.150</td>
</tr>
<tr>
<td>8</td>
<td>0.262</td>
<td>0.447</td>
<td>0.589</td>
<td>0.706</td>
<td>1.158</td>
<td>1.337</td>
<td>1.725</td>
<td>2.950</td>
<td>5.744</td>
<td>8.534</td>
<td>0.886</td>
</tr>
<tr>
<td>9</td>
<td>0.261</td>
<td>0.445</td>
<td>0.581</td>
<td>0.687</td>
<td>1.135</td>
<td>1.311</td>
<td>1.653</td>
<td>2.845</td>
<td>5.571</td>
<td>7.811</td>
<td>0.664</td>
</tr>
<tr>
<td>10</td>
<td>0.260</td>
<td>0.443</td>
<td>0.575</td>
<td>0.672</td>
<td>1.116</td>
<td>1.290</td>
<td>1.591</td>
<td>2.750</td>
<td>5.428</td>
<td>7.179</td>
<td>0.484</td>
</tr>
<tr>
<td>11</td>
<td>0.260</td>
<td>0.441</td>
<td>0.570</td>
<td>0.660</td>
<td>1.102</td>
<td>1.273</td>
<td>1.542</td>
<td>2.672</td>
<td>5.306</td>
<td>6.642</td>
<td>0.341</td>
</tr>
<tr>
<td>12</td>
<td>0.259</td>
<td>0.439</td>
<td>0.566</td>
<td>0.651</td>
<td>1.091</td>
<td>1.259</td>
<td>1.501</td>
<td>2.606</td>
<td>5.205</td>
<td>6.160</td>
<td>0.232</td>
</tr>
<tr>
<td>13</td>
<td>0.259</td>
<td>0.438</td>
<td>0.562</td>
<td>0.643</td>
<td>1.082</td>
<td>1.248</td>
<td>1.463</td>
<td>2.543</td>
<td>5.120</td>
<td>5.758</td>
<td>0.145</td>
</tr>
<tr>
<td>14</td>
<td>0.258</td>
<td>0.437</td>
<td>0.559</td>
<td>0.636</td>
<td>1.075</td>
<td>1.239</td>
<td>1.429</td>
<td>2.485</td>
<td>4.966</td>
<td>5.408</td>
<td>0.087</td>
</tr>
<tr>
<td>15</td>
<td>0.258</td>
<td>0.436</td>
<td>0.556</td>
<td>0.630</td>
<td>1.069</td>
<td>1.232</td>
<td>1.400</td>
<td>2.432</td>
<td>4.829</td>
<td>5.160</td>
<td>0.055</td>
</tr>
<tr>
<td>20</td>
<td>0.257</td>
<td>0.435</td>
<td>0.542</td>
<td>0.617</td>
<td>1.050</td>
<td>1.216</td>
<td>1.323</td>
<td>2.262</td>
<td>4.337</td>
<td>4.427</td>
<td>0.027</td>
</tr>
<tr>
<td>25</td>
<td>0.256</td>
<td>0.434</td>
<td>0.537</td>
<td>0.611</td>
<td>1.040</td>
<td>1.206</td>
<td>1.299</td>
<td>2.160</td>
<td>4.140</td>
<td>4.144</td>
<td>0.017</td>
</tr>
<tr>
<td>30</td>
<td>0.256</td>
<td>0.433</td>
<td>0.531</td>
<td>0.606</td>
<td>1.033</td>
<td>1.197</td>
<td>1.280</td>
<td>2.080</td>
<td>4.000</td>
<td>4.025</td>
<td>0.013</td>
</tr>
<tr>
<td>40</td>
<td>0.255</td>
<td>0.432</td>
<td>0.522</td>
<td>0.598</td>
<td>1.020</td>
<td>1.177</td>
<td>1.241</td>
<td>1.983</td>
<td>3.752</td>
<td>3.807</td>
<td>0.008</td>
</tr>
<tr>
<td>50</td>
<td>0.255</td>
<td>0.431</td>
<td>0.515</td>
<td>0.592</td>
<td>1.012</td>
<td>1.164</td>
<td>1.220</td>
<td>1.895</td>
<td>3.584</td>
<td>3.628</td>
<td>0.005</td>
</tr>
<tr>
<td>60</td>
<td>0.254</td>
<td>0.430</td>
<td>0.509</td>
<td>0.586</td>
<td>1.006</td>
<td>1.153</td>
<td>1.206</td>
<td>1.816</td>
<td>3.440</td>
<td>3.508</td>
<td>0.004</td>
</tr>
<tr>
<td>(\infty)</td>
<td>0.253</td>
<td>0.429</td>
<td>0.494</td>
<td>0.578</td>
<td>0.995</td>
<td>1.143</td>
<td>1.192</td>
<td>1.746</td>
<td>3.291</td>
<td>3.390</td>
<td>0.002</td>
</tr>
</tbody>
</table>