1 (i) (a) What is a topological space? If X is a topological space and \sim is an equivalence relation on X, define the quotient topology on $Y := X/\sim$.

(b) Suppose X is a topological space, give $Y = X/\sim$ the quotient topology, and let $\pi : X \rightarrow Y$ be the quotient map. Prove that if $f : Y \rightarrow Z$ is a function, then f is continuous if and only if $f \circ \pi$ is continuous. Prove that if X is compact then Y is compact. Does the reverse implication hold?

(ii) (a) If X is a topological space and $x_0 \in X$, what is a loop based at x_0?

(b) Suppose that ω, σ are two loops based at x_0, define the reverse loop $\overline{\omega}$ and the concatenated loop $\omega \cdot \sigma$. Show that $\omega \cdot \overline{\omega}$ is loop-homotopic to the constant loop.

(c) Show that if ω is any loop in X based at x_0, then there is a continuous map $f : S^1 \rightarrow X$ so that $[\omega] \in \text{im}(f_* : \pi_1(S^1, 1) \rightarrow \pi_1(X, x_0))$. Deduce that if $\pi_1(X, x_0)$ is non-trivial for some topological space X, then so too is $\pi_1(S^1, 1)$.

Turn Over
2 (i) (a) What is a covering map? (4 marks)

(b) State the Path Lifting Lemma for a covering map \(p : Y \rightarrow X \), and explain how it can be used to define a function

\[
\ell : \pi_1(X, x_0) \rightarrow p^{-1}(x_0),
\]

where \(x_0 \in X \). State conditions under which \(\ell \) is a bijection. (8 marks)

(ii) (a) Show that if \(Y \) is a Hausdorff space and \(y_1, \ldots, y_n \) are \(n \) distinct points then there are disjoint open sets \(V_1, \ldots, V_n \) with \(y_i \in V_i \). (2 marks)

(b) Suppose \(G \) is a finite group of order \(n \) acting freely on a Hausdorff space \(Y \) (i.e., for any \(y \in Y \) the orbit \(\{gy \mid g \in G\} \) of \(y \) has \(n \) elements). Show that if \(X = Y/G \) is the space of orbits with the quotient topology, then the quotient map \(q : Y \rightarrow X \) is a covering map. (6 marks)

(c) Assuming that the group \(SU(n) \) is simply connected and \(G \) is a finite subgroup of \(SU(n) \), construct a space with fundamental group \(G \). [The group \(SU(n) \) consists of \(n \times n \) complex matrices \(A \) with \(AA^T = I \) and \(\det(A) = 1 \), but all you need to know is that it is Hausdorff and that the group multiplication is continuous.] (5 marks)

3 (i) (a) What is a chain complex of abelian groups? What is the homology of such a chain complex? (4 marks)

(b) State the Mayer-Vietoris Theorem for calculating the homology of a simplicial complex \(K = L \cup M \) expressed as the union of two subcomplexes \(L \) and \(M \). (5 marks)

(ii) (a) If \(K \) is a simplicial complex and \(P \) is a new vertex, what is the \(P \)-cone \(c_PK \) on \(K \)? Show that for any \(K \), the homology of \(c_PK \) is the homology of a point. (10 marks)

(b) Suppose \(L \) is a geometric simplicial complex in \(\mathbb{R}^n \) and take the two points \(N = (0, \ldots, 0, +1) \), \(S = (0, \ldots, 0, -1) \) in \(\mathbb{R}^{n+1} \). Let \(\Sigma L = c_NL \cup c_SL \) be the union of the \(N \)-cone and the \(S \)-cone on \(L \), and show that

\[
H_{i+1}(\Sigma L) = H_i(L)
\]

for \(i \geq 1 \). (6 marks)
4 (i) (a) Suppose that C_\bullet is a chain complex with only finitely many terms non-zero and all terms finite dimensional vector spaces over \mathbb{Q}. What is the Lefschetz number $\Lambda(\theta)$ of a chain map $\theta : C_\bullet \to C_\bullet$? (2 marks)

(b) Show that $\Lambda(\theta) = \Lambda(\theta_*)$ where $\theta_* : H_*(C_\bullet) \to H_*(C_\bullet)$ is the induced map in homology. (6 marks)

(c) State the Lefschetz Fixed Point Theorem. (2 marks)

(ii) Consider maps $f : M(g) \to M(g)$, where $M(g)$ denotes a compact orientable surface of genus $g \geq 0$.

(a) Write down the homology of $M(g)$. For which g is there a self-map f without fixed points so that $f \simeq id_{M(g)}$? (7 marks)

(b) Suppose that $f \simeq id$ and that f is a simplicial isomorphism for some triangulation. Show that f cannot have exactly one fixed point P. [Hint: Consider f restricted to the punctured surface $M(g) \setminus \{P\}$.] (8 marks)

5 Are the following true or false. Justify your answers.

(i) Any self-map of the projective plane $\mathbb{R}P^2$ has a fixed point. (5 marks)

(ii) \mathbb{R}^2 is homeomorphic to \mathbb{R}^3. (5 marks)

(iii) There is a covering map $T^2 \to S^2$ from the 2-torus to the 2-sphere. (5 marks)

(iv) If X is obtained from the 2-torus T^2 by deleting one point, then X is homotopy equivalent to a 1-dimensional geometric simplicial complex. (5 marks)

(v) The space $X = S^2 \cup \mathbb{B}^2$ is homotopy equivalent to S^2. [Here S^2 is the unit sphere in \mathbb{R}^3 centred at the origin and \mathbb{B}^2 is the unit disc in the (x, y)-plane centred at the origin.] (5 marks)

End of Question Paper