SCHOOL OF MATHEMATICS AND STATISTICS
Autumn Semester 2017–18

WAVES
2 hours

Marks will be awarded for your best FOUR answers. The marks awarded to each question or section of question are shown in italics.

Please leave this exam paper on your desk
Do not remove it from the hall
Registration number from U-Card (9 digits) to be completed by student

[9 blank spaces]
The one-dimensional wave equation for $\phi(x, t)$ is

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}. $$

(i) Show that the general solution for $\phi(x, t)$ is

$$\phi(x, t) = f(x - ct) + g(x + ct),$$

where f and g are arbitrary functions. \hspace{1cm} (11 marks)

(ii) Given that

$$\phi(x, 0) = \begin{cases}
0 & (-\infty < x \leq -a) \\
0 & (a \leq x < \infty),
\end{cases}$$

and that $\frac{\partial \phi(x, 0)}{\partial t} = 0$ for all x, find $\phi(x, t)$ where $a > 0$. \hspace{1cm} (9 marks)

(iii) Sketch the graph of $\phi(x, t)$ against x when $ct = 2a$. \hspace{1cm} (5 marks)

The vibration of a string evolves according to the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}. $$

The boundary conditions are that $u = 0$ at both $x = 0$ and $x = a$, and initially, i.e. at $t = 0$, $\partial u/\partial t = 0$.

(i) Using the method of separation of variables, show that this configuration has the general solution

$$u(x, t) = \sum_{n=0}^{\infty} A_n \sin \frac{n\pi x}{a} \cos \frac{n\pi}{a} ct. $$

(16 marks)

(ii) If initially $u = f(x)$, find an expression for A_n in terms of $f(x)$. \hspace{1cm} (6 marks)

(iii) Show that each term in the general solution can be expressed in terms of

$$\sin \left[\frac{n\pi}{a} (x + ct) \right] \quad \text{and} \quad \sin \left[\frac{n\pi}{a} (x - ct) \right],$$

and give a brief physical interpretation. \hspace{1cm} (3 marks)
Consider acoustic waves in a closed cuboidal box with sides a_1, a_2, a_3. The origin O of a Cartesian coordinate system (x_1, x_2, x_3) is taken at one corner of the box with the axes parallel to the sides of the box. The velocity potential ϕ satisfies
\[
\frac{\partial^2 \phi}{\partial x_1^2} + \frac{\partial^2 \phi}{\partial x_2^2} + \frac{\partial^2 \phi}{\partial x_3^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2},
\]
where the constant c is the speed of sound. The boundary conditions on ϕ are:

(a) $\frac{\partial \phi}{\partial x_1} = 0$ at $x_1 = 0$, $x_1 = a_1$;
(b) $\frac{\partial \phi}{\partial x_2} = 0$ at $x_2 = 0$, $x_2 = a_2$;
(c) $\frac{\partial \phi}{\partial x_3} = 0$ at $x_3 = 0$, $x_3 = a_3$.

(i) Seek separable solutions of the form
\[
\phi = X_1(x_1)X_2(x_2)X_3(x_3)\cos \omega t,
\]
where ω is a positive constant.

Show that X_i''/X_i must be constant for each i, and that these constants must all be non-positive. Here $'$ denotes differentiation.

Deduce that
\[
\phi \propto \cos \left(\frac{n_1 \pi x_1}{a_1} \right) \cos \left(\frac{n_2 \pi x_2}{a_2} \right) \cos \left(\frac{n_3 \pi x_3}{a_3} \right) \cos \omega t,
\]
where the non-negative integers n_1, n_2, n_3 satisfy
\[
\frac{n_1^2}{A_1^2} + \frac{n_2^2}{A_2^2} + \frac{n_3^2}{A_3^2} = 1 \quad \text{with} \quad A_1 = \frac{a_1 \omega}{\pi c}, \quad A_2 = \frac{a_2 \omega}{\pi c}, \quad A_3 = \frac{a_3 \omega}{\pi c}.
\]

(18 marks)

(ii) Deduce that, for a large box, the number of different waves with angular frequency less than or equal to ω is approximately equal to
\[
\frac{\omega^3}{6 \pi^2 c^3} a_1 a_2 a_3.
\]

(7 marks)

[HINT. Consider the number of integer triples (n_1, n_2, n_3) within the surface $\frac{x_1^2}{A_1^2} + \frac{x_2^2}{A_2^2} + \frac{x_3^2}{A_3^2} = 1$, and how this number relates to the volume bounded by the surface which is given to be $\frac{4 \pi}{3} A_1 A_2 A_3$.]
The equilibrium position of the free surface of a liquid of depth \(h \) is \(z = 0 \), where \(z \) is measured vertically upwards. A surface wave causes the displacement of this surface to be \(\eta(x, t) \), where \(x \) is measured along the free surface and

\[
\eta = a \sin kx \cos \omega t,
\]

where \(a, k \) and \(\omega \) are positive constants with \(ka \ll 1 \). You are given that the velocity potential \(\phi = \phi(x, z, t) \) satisfies

\[
\begin{align*}
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} &= 0; \quad (a) \\
\frac{\partial \phi}{\partial z} &= 0 \text{ at } z = -h; \quad (b) \\
\frac{\partial \phi}{\partial z} &= \frac{\partial \eta}{\partial t} \text{ at } z = 0; \quad (c) \\
\frac{\partial \phi}{\partial t} + g \eta &= 0 \text{ at } z = 0. \quad (d)
\end{align*}
\]

(i) Explain briefly why each of (a), (b), (c) and (d) hold.

(ii) Show that all conditions can be satisfied by taking

\[
\phi = f(z) \sin kx \sin \omega t
\]

for a suitable \(f(z) \), which is to be found, and provided

\[
\omega^2 = gk \tanh(kh).
\]

(iii) Determine the phase velocity \(c \) and the group velocity \(c_g \) in terms of \(g, k \) and \(h \). Show that

\[
\frac{c_g}{c} = \frac{1}{2} \left[1 + \frac{2kh}{\sinh 2kh} \right].
\]

In a model of traffic flow in the direction of \(Ox \), the density of traffic at time \(t \) is \(\rho(x, t) \), the speed of traffic of density \(\rho \) is \(v = v(\rho) \), the flowrate \(q(\rho) = \rho v(\rho) \), and \(c(\rho) = q'(\rho) \).

(i) Given that \(\rho_t + c \rho_x = 0 \), show that \(c_t + c c_x = 0 \). If \(\rho(x, 0) = f(x) \), deduce that in regions where \(c(x, t) \) is continuously differentiable:

\[
c = c\{f(\xi)\} = F(\xi) \text{ on straight lines } x = \xi + F(\xi)t.
\]
(ii) A shock occurs with values of \((\rho, \ q = q(\rho), \ c = c(\rho))\) on the two sides of the shock equal to \((\rho_1, \ q_1, \ c_1)\) and \((\rho_2, \ q_2, \ c_2)\).

Given that the speed \(U\) of the shock satisfies

\[
U = \frac{q_1 - q_2}{\rho_1 - \rho_2},
\]

show that

\[
U = \frac{1}{2}(c_1 + c_2)
\]

in the following two cases:

(a) exactly when \(q(\rho)\) is a quadratic function of \(\rho\);

(b) approximately when the shock is weak, i.e. when \(|\rho_2 - \rho_1| \ll \rho_1\) and \(|\rho_2 - \rho_1| \ll \rho_2\).

\(12\) marks

End of Question Paper