SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester
2017–2018

Inference
3 hours

Candidates may bring to the examination a calculator which conforms to University regulations. Marks will be awarded for your best five answers. Total marks 100.

Please leave this exam paper on your desk
Do not remove it from the hall
Registration number from U-Card (9 digits) to be completed by student
1
(i) Define the cumulative distribution function (CDF), \(F_X(x) \), of a random variable \(X \).

\((1 \text{ mark}) \)

(ii) Suppose you are given a set of independent identically distributed samples from \(F_X(\cdot) \), i.e., you are given data \(\{X_1, \ldots, X_n\} \) where each \(X_i \) has the same distribution as \(X \). Give the mathematical expression for an unbiased estimator of the CDF of \(X \) based on these data, \(\hat{F}_X(\cdot) \) say, and prove that it is an unbiased estimator of \(F \).

\((5 \text{ marks}) \)

(iii) State the asymptotic distribution of \(\hat{F}_X(x) \) (i.e., the distribution as \(n \to \infty \)).

\((3 \text{ marks}) \)

(iv) The median, \(m(F) \), of distribution \(F \) is defined to be the value \(m \) such that

\[
\int_{-\infty}^{m} dF(x) \geq \frac{1}{2} \text{ and } \int_{m}^{\infty} dF(x) \geq \frac{1}{2}.
\]

Using the ‘plug-in principle’, find an estimator of the median of \(F \), i.e., calculate \(m(\hat{F}) \).

You may assume that \(n \), the number of samples in your dataset, is an odd number.

\((4 \text{ marks}) \)

(v) Describe a bootstrap procedure for estimating the standard error of \(m(\hat{F}_X) \).

\((5 \text{ marks}) \)

(vi) State how you would calculate a 95% confidence interval for \(m(\hat{F}_X) \).

\((2 \text{ marks}) \)

2
A precision weighing device yields unbiased measurements within half a gramme, which can be modelled as \(\text{Un}(x \mid \theta - 1/2, \theta + 1/2) \), where \(\theta \) is the unknown weight. A priori, it is believed \(\theta \sim \text{Un}(\theta \mid 10, 20) \).

(i) Find the posterior distribution of \(\theta \) if a single measurement, \(x = 12 \), is made.

\((5 \text{ marks}) \)

(ii) Using \(x = \{11, 11.5, 11.7, 11.1, 11.4, 10.9\} \), a different set of six independent measurements:

(a) Find the posterior distribution of \(\theta \).

\((8 \text{ marks}) \)

(b) Show that the posterior mean and variance are 11.3 and 0.003, respectively.

\((2 \text{ marks}) \)

(c) Provide an equally tailed posterior interval of probability 0.95 and explain why this is a HPD interval.

\((5 \text{ marks}) \)
An economic model has been constructed to predict the cost per patient of a new treatment for osteoporosis. In addition to the price of the drug, the model includes costs of hospital visits, nursing care, and any necessary surgery. The model has two uncertain inputs:

- x: the time in days until the patient’s first hip fracture
- y: the number of days of nursing home care required, if the patient suffers a fracture.

M is defined to be the expected cost per patient, and P_1 is the probability that a patient’s cost will exceed £30,000.

The following distributions are assumed for x and y:

\[
x \sim \text{exponential}(rate = 1/20),
\]
\[
y \sim N(10, 4).
\]

The model is implemented in R using a user-defined function $\text{cost}(x, y)$. If x and y are vectors, then $\text{cost}(x, y)$ will return the appropriate vector output. Some output from the R session is given below.

```r
> n<-1000
> x<-rexp(n,1/20)
> y<-rnorm(n,10,2)
> c1<-cost(x,y)
> mean(c1)
[1] 10419.72
> var(c1)
[1] 141763122
> sum(c1>30000)
[1] 65
```

(i) (a) Estimate M and P_1, giving 95% confidence intervals for both.

(b) How large would n need to be to find a 95% confidence for M that has a width of less than 10?

(6 marks)

(1 mark)
(ii) The R code is now changed as follows:

```r
> u1<-runif(500,0,1)
> u2<-1-u1
> x<-c( -20*log(1-u1) , -20*log(1-u2) )
> y<-rnorm(1000,10,2)
> c1<-cost(x,y)
> mean(c1)
[1] 10793.6
> var(c1)
[1] 15393091
> cor(c1[1:500],c1[501:1000])
[1] -0.5053812
```

(a) What two techniques have been used in the first three lines of this code? Give the motivation for these changes to the code.
(3 marks)

(b) Based on the new output, calculate a 95% confidence interval for M.
(5 marks)

(iii) An alternative distribution is proposed for y: the X^2_4 distribution, with density function

$$
\pi_Y(y) = \frac{1}{4} y e^{-\frac{y}{4}},
$$

for $y > 0$.

If the original R analysis generated output values c_1, \ldots, c_{1000} from input values x_1, \ldots, x_{1000} and y_1, \ldots, y_{1000}, give a formula for the Monte Carlo estimate of M, corresponding to the new distribution of y, in terms of c_1, \ldots, c_{1000} and y_1, \ldots, y_{1000}, which could be calculated without doing any further evaluations of the function cost.
(5 marks)
4 Assume that the waiting time, t, of a client in a bank can be modelled with an exponential distribution with unknown parameter λ,

$$f(t | \lambda) = \lambda \exp[-\lambda t], \quad \lambda > 0.$$

and that the prior distribution is Gamma with parameters (a, b):

$$\pi(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp[-b \lambda]; \quad a, b > 0.$$

(i) Find the prior parameters if we believe $\mathbb{E}[\lambda] = 0.2$ and $\mathbb{V}[\lambda] = 1.$ \hspace{1cm} (1 mark)

(ii) An average waiting time, $\bar{t} = 3.8$, is recorded from observing 20 clients at random. Show that the prior is conjugate and provide the posterior parameters. \hspace{1cm} (5 marks)

(iii) The coefficient of variation of a random quantity with nonzero mean, μ and standard deviation $\sigma > 0$ is defined as σ/μ. What is the smallest sample size required to reduce the posterior coefficient of variation to 0.1? \hspace{1cm} (6 marks)

(iv) Explain why the highest predictive probability interval of the waiting time for a randomly chosen new client is of the form $(0, c)$ and show that $c = 12.286.$ \hspace{1cm} (8 marks)
(i) In the R code below, the vector \(x \) consists of measurements from 6 patients in a treatment group, and the vector \(y \) consists of measurements from 6 patients in a control group. Two different methods are used for testing the same hypothesis about the two group means.

Method I:

\[
\begin{align*}
T.\text{obs} & \leftarrow t.\text{test}(x,y) \text{statistic} \\
data & \leftarrow c(x,y) \\
T.\text{rand} & \leftarrow c() \\
\text{for}(i \text{ in } 1:1000)\{ \\
& \quad d \leftarrow \text{sample}(data, \text{replace}=F) \\
& \quad T.\text{rand}[i] \leftarrow t.\text{test}(d[1:6],d[7:12]) \text{statistic} \\
\} \\
\text{sum}(\text{abs}(T.\text{rand}) \geq \text{abs}(T.\text{obs}))
\end{align*}
\]

Method II:

\[
\begin{align*}
smp.\text{mean} & \leftarrow \text{mean}(data) \\
smp.\text{sd} & \leftarrow \text{sd}(data) \\
T.\text{sim} & \leftarrow \text{replicate}(10^4, \\
& \quad \{} \\
& \quad \quad x \leftarrow \text{rnorm}(6, \text{mean}=smp.\text{mean}, \text{sd}=smp.\text{sd}) \\
& \quad \quad y \leftarrow \text{rnorm}(6, \text{mean}=smp.\text{mean}, \text{sd}=smp.\text{sd}) \\
& \quad \quad t.\text{test}(x,y) \text{statistic} \\
& \quad \}) \\
\text{sum}(\text{abs}(T.\text{sim}) \geq \text{abs}(T.\text{obs}))
\end{align*}
\]

(a) State the null hypothesis being tested and the alternative hypothesis. For each method, name the technique that is being used to implement the hypothesis test. (3 marks)

(b) State the main assumption that is required for method I to be appropriate. (1 mark)

(c) Suppose an exact randomisation test is used to test the same null hypothesis (with the same alternative hypothesis). What is the smallest possible \(p \)-value that could be obtained? (2 marks)

(d) If method I gave an output of 41, and method II gave an output of 310, state the results of the two hypothesis tests. (1 mark)
(ii) Let X have a $N(0, 1)$ distribution, truncated to lie inside the interval $[-k, k]$. It has probability density function

$$f(x) = \begin{cases} \frac{r}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} & \text{if } x \in [-k, k] \\ 0 & \text{otherwise,} \end{cases}$$

where r is a constant to be determined.

(a) Derive an expression for r, involving the CDF for the $N(0, 1)$ distribution $\Phi(\cdot)$, for a given value of k. (3 marks)

(b) Random values of X can be generated using rejection sampling, using a $U[-k, k]$ distribution as the proposal/envelope function. Derive the rejection sampling algorithm, and state its acceptance rate. (6 marks)

(c) A different rejection algorithm is to generate Y from a $N(0, 1)$ distribution, and accept it if $Y \in [-k, k]$, otherwise reject. Calculate the acceptance rate of this algorithm, and hence find the largest value of k for which using a $U[-k, k]$ proposal has an acceptance rate that is higher than using a standard normal proposal. (4 marks)

6 Consider the regression model,

$$y_i = \alpha_i + \beta x_i + \epsilon_i; \quad i = 1, \ldots, n$$

with $\epsilon_i \sim N(\epsilon_i \mid 0, 1/\lambda)$, i.i.d., and prior structure

$$\alpha_i \sim N(\alpha_i \mid \mu, 1/p) \quad \text{independent for } i = 1, \ldots, n$$

$$\mu \sim N(\mu \mid a, 1/r) \quad \beta \sim N(\beta \mid b, 1/q) \quad \text{and} \quad \lambda \sim \text{Ga}(\lambda \mid c, d)$$

(i) Show that the full conditional of:

(a) each of the individual intercepts, α_i, is Gaussian and provide explicit expressions for the parameters; (3 marks)

(b) the mean intercept, μ, is Gaussian and provide explicit expressions for the parameters; (3 marks)

(c) the regression slope, β, is Gaussian and provide explicit expressions for the parameters; (3 marks)

(d) the regression precision, λ, is Gamma and provide explicit expressions for the parameters. (3 marks)

(ii) Write pseudo-code for an MCMC sampling scheme for exploring the posterior distribution. (8 marks)
Notation and distributions

Bayesian Statistics 2016–17

Throughout the course it is assumed that the probabilistic behaviour of available data, x, is described by a parametric model; hence all inferences will be conditional to the selected model.

Each model is composed by a family of probability distributions, indexed by a parameter vector, θ, which in turn can be described by their appropriate density functions. We will denote a specific model by

$$\mathcal{M} = \{ f(x \mid \theta), \ x \in \mathcal{X}, \ \theta \in \Theta \},$$

where $f(x \mid \theta) \geq 0$ and $\int_{\mathcal{X}} f(x \mid \theta) \, dx = 1$; when there is no risk of confusion, we will refer to a model simply as $f(x \mid \theta)$. We call \mathcal{X} the support of the distribution and Θ the parameter space.

We will use $f(x \mid \theta)$ and $f(y \mid \phi)$ to refer to probability densities of x and y, without necessarily meaning that both quantities share a common distribution. In general, the Greek alphabet is reserved for non-observables (typically, parameters) and the Latin alphabet for observations (data). Bold typeface denotes vector valued quantities.

Specific density functions are referred by appropriate names; e.g. if the observable x follows a Normal distribution with mean μ and variance σ^2, its density is denoted by $N(x \mid \mu, \sigma^2)$. Tables below present some density functions used throughout the course.

Moments and other descriptive measures of probability distributions are described by appropriate symbols. Thus,

$$\mathbb{E}[x \mid \theta] = \int_{\mathcal{X}} x \, f(x \mid \theta) \, dx,$$

$$\mathbb{V}[x \mid \theta] = \int_{\mathcal{X}} (x - \mathbb{E}[x \mid \theta])^2 \, f(x \mid \theta) \, dx,$$

$$\text{Cov}[x \mid \theta] = \int_{\mathcal{X}} (x - \mathbb{E}[x \mid \theta])(x - \mathbb{E}[x \mid \theta]) \, f(x \mid \theta) \, dx,$$

respectively stand for the expected value, variance and covariance of the given quantity, while $\text{Med}[x \mid \theta]$ and $\text{Mode}[x \mid \theta]$ denote the median and mode, respectively. Sums are used instead of integrals when the support of the random quantity is discrete.

We use, $t = t(x)$ to denote a generic statistic (typically sufficient) derived from observed data, $x = \{x_1, \ldots, x_n\}$; standard symbols are used for common statistics; thus,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{and} \quad s_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

denote the sample mean and variance, respectively; while $x_{(p)}$ stands for the p^{th} order statistic; in particular $x_{(1)}$ and $x_{(n)}$ respectively denote the minimum and maximum observed values.
SOME DISCRETE DISTRIBUTIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Context</th>
<th>Notation</th>
<th>p.f. (p(x \mid \theta))</th>
<th>(\mathbb{E}[X \mid \theta])</th>
<th>(\mathbb{V}[X \mid \theta])</th>
<th>Applications</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>Set of (k) equally likely outcomes (usually, not necessarily, the integers)</td>
<td>(U(1, \ldots, k))</td>
<td>(p(x) = \frac{1}{k}) (x \in {1, \ldots, k}, K = \mathbb{Z}_+)</td>
<td>(\frac{k + 1}{2})</td>
<td>(\frac{k^2 - 1}{12})</td>
<td>Dice</td>
<td></td>
</tr>
<tr>
<td>Bernoulli</td>
<td>Expt. with two outcomes: 'success' w.p. (\theta) and 'failure' w.p. (1 - \theta) (X \equiv \text{no. successes})</td>
<td>(\text{Ber}(x \mid \theta))</td>
<td>(p(x) = \theta^x(1 - \theta)^{1-x}) (x \in {0, 1}, \theta = (0, 1))</td>
<td>(\theta)</td>
<td>(\theta(1 - \theta))</td>
<td>Coins, constituent of more complex distributions</td>
<td></td>
</tr>
<tr>
<td>Binomial</td>
<td>(X \equiv \text{no. successes in} \ n \ \text{ind. } \text{Ber}(x \mid \theta) \text{ trials})</td>
<td>(\text{Bi}(x \mid n, \theta))</td>
<td>(p(x) = \binom{n}{x} \theta^x(1 - \theta)^{n-x}) (x \in {0, 1, 2, \ldots, n}, \theta = (0, 1))</td>
<td>(n\theta)</td>
<td>(n\theta(1 - \theta))</td>
<td>Sampling with replacement</td>
<td>(\text{Bi}(x \mid 1, \theta) \equiv \text{Ber}(x \mid \theta))</td>
</tr>
<tr>
<td>Geometric</td>
<td>(X \equiv \text{no. failures until 1st success in sequence of ind. } \text{Ber}(x \mid \theta) \text{ trials})</td>
<td>(\text{Ge}(x \mid \theta))</td>
<td>(p(x) = \theta(1 - \theta)^x) (x \in {0, 1, 2, \ldots}, \theta = (0, 1))</td>
<td>(\frac{1 - \theta}{\theta})</td>
<td>(\frac{1 - \theta}{\theta^2})</td>
<td>Waiting times (for single events)</td>
<td>Alternative formulation in terms of (Y \equiv \text{no. of trials to 1st success} \ (Y = X + 1))</td>
</tr>
<tr>
<td>Negative binomial (or Pascal)</td>
<td>(X \equiv \text{no. failures to} \ m \text{-th success in sequence of ind. } \text{Ber}(x \mid \theta) \text{ trials. Generalisation of Geometric})</td>
<td>(\text{NB}(x \mid m, \theta))</td>
<td>(p(x) = \frac{(m+x-1)!}{x!m!}(1 - \theta)^x) (x \in {0, 1, 2, \ldots}, \theta = (0, 1))</td>
<td>(\frac{m(1 - \theta)}{\theta})</td>
<td>(\frac{m(1 - \theta)}{\theta^2})</td>
<td>Waiting times (for compound events)</td>
<td>(\text{NB}(x \mid 1, \theta) \equiv \text{Ge}(x \mid \theta))</td>
</tr>
<tr>
<td>Poisson</td>
<td>Arises empirically or via Poisson Process (PP) for counting events. For PP rate (\nu) the no. of events in time (t \sim \text{Po}(x \mid \nu t)). Also as an approx. to the Binomial</td>
<td>(\text{Po}(x \mid \lambda))</td>
<td>(p(x) = \frac{e^{-\lambda}\lambda^x}{x!}) (x \in {0, 1, 2, \ldots}, \lambda = \mathbb{R}_+)</td>
<td>(\lambda)</td>
<td>(\lambda)</td>
<td>Counting events occurring 'at random' in space or time</td>
<td>(\text{Bi}(x \mid n, \theta) \approx \text{Po}(x \mid n\theta)) if (n) large, (\theta) small, and (n\theta = c).</td>
</tr>
</tbody>
</table>
SOME CONTINUOUS DISTRIBUTIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Notation</th>
<th>p.d.f. $f(x \mid \theta)$</th>
<th>$\mathbb{E}[X \mid \theta]$</th>
<th>$\mathbb{V}[X \mid \theta]$</th>
<th>Applications</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>$\text{Un}(x \mid \alpha, \beta)$</td>
<td>$f(x) = \frac{1}{\beta - \alpha} \mathcal{X} = [\alpha, \beta]$ $\Theta = {(\alpha, \beta) \in \mathbb{R}^2 : \alpha < \beta}$</td>
<td>$\alpha + \beta$</td>
<td>$\frac{(\beta - \alpha)^2}{2}$</td>
<td>Rounding errors $\text{Un}(x \mid -1/2, 1/2)$. Simulating other distributions from $\text{Un}(x \mid 0, 1)$</td>
<td>Also parameterised in terms of $1/\beta$. $\text{Ga}(x \mid 1, \lambda) \equiv \text{Ex}(x \mid \lambda)$</td>
</tr>
<tr>
<td>Exponential</td>
<td>$\text{Ex}(x \mid \lambda)$</td>
<td>$f(x) = \lambda e^{-\lambda x}$ $\mathcal{X} = \mathbb{R}+$ $\Lambda = \mathbb{R}+$</td>
<td>$\frac{1}{\lambda}$</td>
<td>$\frac{1}{\lambda^2}$</td>
<td>Inter-event times for Poisson Process. Models lifetimes of non-ageing items.</td>
<td>Also parameterised in terms of $1/\beta$. $\text{Ga}(x \mid 1, \lambda) \equiv \text{Ex}(x \mid \lambda)$</td>
</tr>
<tr>
<td>Gamma</td>
<td>$\text{Ga}(x \mid \alpha, \beta)$</td>
<td>$f(x) = \frac{\beta x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$ $\mathcal{X} = \mathbb{R}_+$ $\Theta = {(\alpha, \beta) \in \mathbb{R}^2 : \alpha > 0, \beta > 0}$</td>
<td>$\frac{\alpha}{\beta}$</td>
<td>$\frac{\alpha}{\beta^2}$</td>
<td>Times between k events for Poisson Process. Lifetimes of ageing items. Conjugate prior for exponential model.</td>
<td>Also parameterised in terms of $1/\beta$. $\text{Ga}(x \mid 1, \lambda) \equiv \text{Ex}(x \mid \lambda)$, $\text{Ga}(x \mid v/2, 1/2) \equiv X^2_{(v/2)}(x)$ $1/x = y \sim \text{IG}(y \mid \alpha, \beta)$</td>
</tr>
<tr>
<td>Beta</td>
<td>$\text{Be}(x \mid \alpha, \beta)$</td>
<td>$f(x) = \frac{\alpha^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$ $\mathcal{X} = (0, 1)$ $\Theta = {(\alpha, \beta) \in \mathbb{R}^2 : \alpha > 0, \beta > 0}$</td>
<td>$\frac{\alpha}{\alpha + \beta}$</td>
<td>$\frac{\alpha\beta(\alpha + \beta)^{-2}}{(\alpha + \beta + 1)}$</td>
<td>Useful model for variables with finite range. Conjugate prior for Binomial model.</td>
<td>$\text{Be}(x \mid 1, 1) \equiv \text{Un}(x \mid 0, 1)$ $\text{Be}(x \mid \alpha, \beta)$ is reflection about $\frac{1}{2}$ of $\text{Be}(x \mid \beta, \alpha)$. Can re-scale $\text{Be}(x \mid \alpha, \beta)$ to any finite range $[a, b]$ by $Y = (b-a)X + a$</td>
</tr>
<tr>
<td>Normal (Gaussian)</td>
<td>$\text{N}(x \mid \mu, \sigma^2)$</td>
<td>$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$ $\mathcal{X} = \mathbb{R}$ $\Theta = {(\mu, \sigma^2) \in \mathbb{R}^2 : \sigma^2 > 0}$</td>
<td>μ</td>
<td>σ^2</td>
<td>Empirically and theoretically (via CLT) a useful model. Often parameterised in terms of the precision $\lambda = 1/\sigma^2$</td>
<td>$Y = aX + b \sim \text{N}(y \mid am + b, a^2\sigma^2)$ $Z = \frac{X-\mu}{\sigma} \sim \text{N}(z \mid 0, 1)$ $P[X \in (u, v)] = P[Z \in (\frac{u-\mu}{\sigma}, \frac{v-\mu}{\sigma})]$</td>
</tr>
<tr>
<td>Chi-square</td>
<td>$\chi^2_{(v)}(x)$</td>
<td>$f(x) = \frac{2^{-v/2}}{\Gamma(v/2)} x^{v/2-1} e^{-x/2}$ $\mathcal{X} = \mathbb{R}+$; $\Theta = \mathbb{R}+$</td>
<td>ν</td>
<td>2ν</td>
<td>Sum of squares of ν independent standard Gaussians</td>
<td>$X^2_{(v/2)}(x) \equiv \text{Ga}(x \mid v/2, 1/2)$</td>
</tr>
<tr>
<td>Student t</td>
<td>$\text{St}(x \mid \mu, \lambda, v)$</td>
<td>$f(x) = \frac{\Gamma((v+1)/2)}{\Gamma(v/2)} \left(\frac{\lambda}{\pi}\right)^{1/2} \left(1 + \lambda(x - \mu)^2/v\right)^{-\frac{v+1}{2}}$ $\mathcal{X} = \mathbb{R}, \mu \in \mathbb{R}, \lambda, v > 0$</td>
<td>μ (if $v > 1$)</td>
<td>$\frac{\lambda^{-1}v}{\nu - 2}$ (if $v > 2$)</td>
<td>Useful alternative to Gaussian for variables with heavy tails.</td>
<td>If $X \sim \text{N}(x \mid 0, 1)$ and $Y \sim \chi^2_{(v)}(y)$ independent then $\frac{X}{\sqrt{Y}} \sim t_{v}$. If $Y = \sqrt{\chi^2_{(v)}(x-\mu)}$ then $Y \sim t_{v}(y)$ $t_1 \equiv \text{Cauchy}$. $t^2_v \equiv F_{1,v}$.</td>
</tr>
</tbody>
</table>
SOME MULTIVARIATE DISTRIBUTIONS

Name	Notation	p.d.f.	$E[X	\theta]$	$\forall[X	\theta]$	Applications	Comments		
Multinomial	$\text{Mu}(x	\theta, n)$	$p(x) = \frac{n!}{\prod_{i=1}^{k} x_i!} \prod_{i=1}^{k} \theta_i^{x_i}$	$E[x_i] = n\theta_i$	$\forall[x_i] = n\theta_i(1 - \theta_j)$	Counts of events with more than two possible outcomes	Generalisation of the Binomial distribution			
Dirichlet	$\text{Di}(x	\alpha)$	$f(x) = \frac{\Gamma(\sum\alpha) \prod_{i=1}^{k} x_i^{\alpha_i - 1}}{\prod_{i=1}^{k} \Gamma(\alpha_i)}$	$E[x_i] = \mu_i = \frac{\alpha_i}{\sum\alpha_i}$	$\forall[x_i] = \frac{\mu_i(1 - \mu_i)}{1 + \sum\alpha_i}$	Distribution of points in a simplex	Generalisation of the Beta distribution			
Normal-Gamma	$\text{NG}(x, y	\mu, \lambda, \alpha, \beta)$	$f(x, y) = N(x	\mu, (\lambda\alpha)^{-1}) \text{Ga}(y	\alpha, \beta)$	$E[x] = \mu$	$\forall[x] = \frac{\beta}{\lambda(\alpha - 1)}$	Conjugate prior for Gaussian data	$f(x) = St(x	\mu, \lambda\alpha^{-1}, 2\alpha)$
Gaussian	$\text{N}_k(x	\mu, \Lambda)$	$f(x) =	\Lambda	^{1/2} \frac{(2\pi)^{-k/2}}{\Gamma(k/2)} \exp\left[-\frac{1}{2}(x - \mu)'\Lambda(x - \mu)\right]$	μ	Λ^{-1}	See univariate case	Usually parameterised in terms of the covariance matrix $\Sigma = \Lambda^{-1}$	
Student	$\text{St}_k(x	\mu, \Lambda, \nu)$	$f(x) = \frac{	\Lambda	^{1/2} \Gamma((\nu + k)/2)}{\Gamma(\nu/2) \Gamma(\nu/2)^{k/2}} \left[1 + \frac{1}{\nu}(x - \mu)'\Lambda(x - \mu)\right]^{(\nu + k)/2}$	μ (if $\nu > 1$)	$\frac{\nu}{\nu - 2} \Lambda^{-1}$ (if $\nu > 2$)	See univariate case	Usually parameterised in terms of the covariance matrix $\Sigma = \Lambda^{-1}$	