SCHOOL OF MATHEMATICS AND STATISTICS

Bayesian Methods and Clinical Trials

Candidates may bring to the examination a calculator which conforms to University regulations. Attempt all questions. Total marks 84.

Standard results from the lecture notes may be used without derivation, but must be clearly stated.

Please leave this exam paper on your desk
Do not remove it from the hall

Registration number from U-Card (9 digits)
to be completed by student

 ___ ___ ___ ___ ___ ___ ___ ___ ___
A precision weighing device yields unbiased measurements within half a gramme, which can be modelled as $Un(x | \theta - 1/2, \theta + 1/2)$, where θ is the unknown weight. A priori, it is believed $\theta \sim Un(\theta | 10, 20)$.

(i) Find the posterior distribution of θ if a single measurement, $x = 12$, is made.
(7 marks)

(ii) Using $x = \{11, 11.5, 11.7, 11.1, 11.4, 10.9\}$, a different set of six independent measurements:
(a) Find the posterior distribution of θ.
(10 marks)
(b) Show that the posterior mean and variance are 11.3 and 0.003, respectively.
(4 marks)
(c) Provide an equally tailed posterior interval of probability 0.95 and explain why this is a HPD interval.
(7 marks)

Assume that the waiting time, t, of a client in a bank can be modelled with an exponential distribution with unknown parameter λ,

$$f(t | \lambda) = \lambda \exp[-\lambda t], \quad \lambda > 0.$$

and that the prior distribution is Gamma with parameters (a, b):

$$\pi(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp[-b \lambda]; \quad a, b > 0.$$

(i) Find the prior parameters if we believe $E[\lambda] = 0.2$ and $V[\lambda] = 1$.
(3 marks)

(ii) An average waiting time, $\bar{t} = 3.8$, is recorded from observing 20 clients at random. Show that the prior is conjugate and provide the posterior parameters.
(7 marks)

(iii) The coefficient of variation of a random quantity with nonzero mean, μ and standard deviation $\sigma > 0$ is defined as σ/μ. What is the smallest sample size required to reduce the posterior coefficient of variation to 0.1?
(8 marks)

(iv) Explain why the highest predictive probability interval of the waiting time for a randomly chosen new client is of the form $(0, c)$ and show that $c = 12.286$.
(10 marks)
Consider the regression model,
\[y_i = \alpha_i + \beta x_i + \epsilon_i \; ; \; i = 1, \ldots, n \]
with \(\epsilon_i \sim N(\epsilon_i \mid 0, 1/\lambda) \), i.i.d., and prior structure
\[\alpha_i \sim N(\alpha_i \mid \mu, 1/p) \; ; \; \text{independent for } i = 1, \ldots, n \]
\[\mu \sim N(\mu \mid a, 1/r) , \; \beta \sim N(\beta \mid b, 1/q) \; \text{and} \; \lambda \sim Ga(\lambda \mid c, d) \]

(i) Show that the full conditional of:
(a) Each of the individual intercepts, \(\alpha_i \), is Gaussian and provide explicit expressions for the parameters. (5 marks)
(b) The mean intercept, \(\mu \), is Gaussian and provide explicit expressions for the parameters. (5 marks)
(c) The regression slope, \(\beta \), is Gaussian and provide explicit expressions for the parameters. (5 marks)
(d) The regression precision, \(\lambda \), is Gamma and provide explicit expressions for the parameters. (5 marks)

(ii) Write pseudo-code for an MCMC sampling scheme for exploring the posterior distribution. (8 marks)

End of Question Paper
Throughout the course it is assumed that the probabilistic behaviour of available data, \(x \), is described by a parametric model; hence all inferences will be conditional to the selected model.

Each model is composed by a family of probability distributions, indexed by a parameter vector, \(\theta \), which in turn can be described by their appropriate density functions. We will denote a specific model by

\[
M = \{ f(x \mid \theta), \ x \in \mathcal{X}, \ \theta \in \Theta \},
\]

where \(f(x \mid \theta) \geq 0 \) and \(\int_{\mathcal{X}} f(x \mid \theta) \, dx = 1 \); when there is no risk of confusion, we will refer to a model simply as \(f(x \mid \theta) \). We call \(\mathcal{X} \) the support of the distribution and \(\Theta \) the parameter space.

We will use \(f(x \mid \phi) \) and \(f(y \mid \psi) \) to refer to probability densities of \(x \) and \(y \), without necessarily meaning that both quantities share a common distribution. In general, the Greek alphabet is reserved for non-observables (typically, parameters) and the Latin alphabet for observations (data). Bold typeface denotes vector valued quantities.

Specific density functions are referred to by appropriate names; e.g. if the observable \(x \) follows a Gaussian distribution with mean \(\mu \) and variance \(\sigma^2 \), its density is denoted by \(N(x \mid \mu, \sigma^2) \). Tables below present some density functions used in the course.

Moments and other descriptive measures of probability distributions are described by appropriate symbols. Thus,

\[
\mathbb{E}[x \mid \theta] = \int_{\mathcal{X}} x \ f(x \mid \theta) \, dx,
\]

\[
\mathbb{V}[x \mid \theta] = \int_{\mathcal{X}} (x - \mathbb{E}[x \mid \theta])^2 \ f(x \mid \theta) \, dx,
\]

\[
\text{Cov}[x \mid \theta] = \int_{\mathcal{X}} (x - \mathbb{E}[x \mid \theta])(x - \mathbb{E}[x \mid \theta]) \ f(x \mid \theta) \, dx,
\]

respectively stand for the mean, variance and covariance of the given quantity, while \(\text{Med}[x \mid \theta] \) and \(\text{Mode}[x \mid \theta] \) denote the median and mode, respectively. Sums are used instead of integrals when the support of the random quantity is discrete.

We use, \(t = t(x) \) to denote a generic statistic (typically sufficient) derived from observed data, \(x = \{x_1, \ldots, x_n\} \); standard symbols are used for common statistics; thus,

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \text{and} \quad s_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2,
\]

denote the sample mean and variance, respectively; while \(x_{(p)} \) stands for the \(p^{th} \) order statistic; in particular \(x_{(1)} \) and \(x_{(n)} \) respectively denote the minimum and maximum observed values.
<p>| Name | Notation | p.f. | $\mathbb{E}[X | \theta]$ | $\mathbb{V}[X | \theta]$ | Applications | Comments |
|--------------------|------------------|--|---------------------------|---------------------------|---|--|
| Bernoulli | Ber$(x | \theta)$ | $p(x) = \theta^x (1 - \theta)^{1-x}$ | θ | $\theta(1 - \theta)$ | Coins, trials. | Constituent of more complex distributions. Expt. with binary outcome: success w.p. θ and failure w.p. $1 - \theta$. |
| Binomial | Bi$(x | n, \theta)$ | $p(x) = \binom{n}{x} \theta^x (1 - \theta)^{n-x}$ | $n\theta$ | $n\theta(1 - \theta)$ | Sampling with replacement | X = no. successes in n ind. Ber$(y_i | \theta)$ trials. Bi$(x | 1, \theta) \equiv$ Ber$(x | \theta)$ |
| Geometric | Ge$(x | \theta)$ | $p(x) = \theta(1 - \theta)^x$ | $\frac{1 - \theta}{\theta}$ | $\frac{1 - \theta}{\theta^2}$ | Waiting times (for single events) | X = no. failures until 1st success in sequence of ind. Ber$(x | \theta)$ trials. Alternative formulation in terms of Y = no. of trials to 1st success ($Y = X + 1$) |
| Negative binomial | NB$(x | m, \theta)$ | $p(x) = \binom{m+x-1}{x} \theta^m (1 - \theta)^x$ | $\frac{m(1 - \theta)}{\theta}$ | $\frac{m(1 - \theta)}{\theta^2}$ | Waiting times (for compound events) | X = no. failures to m-th success in sequence of ind. Ber$(x | \theta)$ trials. Generalisation of Geometric. NB$(x | 1, \theta) \equiv$ Ge$(x | \theta)$ |
| Hypergeometric | Hy$(x | N, d, n)$ | (not standard, esp. order of arguments) $p(x) = \binom{d}{x} \binom{N-d}{n-x}$ | $\frac{nd}{N}$ | $\frac{nd(N-n)}{N-1} \left(1 - \frac{d}{N}\right)$ | Sampling without replacement | X = no. of defectives in sample of size n taken without replacement from population of size N of which d are defective. Bi$(x | n, d/N) \rightarrow$ a suitable approx if $n/N < 0.1$ |
| Poisson | Po$(x | \lambda)$ | $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ | λ | λ | Counting events occurring at random in space or time | Arises empirically or via Poisson Process (PP) for counting events. For PP rate ν the no. of events in time $t \sim$ Po$(x | \nu t)$. Also as an approx. to the Binomial. Bi$(x | n, \theta) \approx$ Po$(x | n\theta)$ if n large, θ small, and $n\theta = c$. |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Notation</th>
<th>p.d.f.</th>
<th>$\mathbb{E}[X \mid \theta]$</th>
<th>$\mathbb{V}[X \mid \theta]$</th>
<th>Applications</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>$U(x \mid \alpha, \beta)$</td>
<td>$f(x) = \frac{1}{\beta - \alpha}$</td>
<td>$\frac{\alpha + \beta}{2}$</td>
<td>$\frac{(\beta - \alpha)^2}{12}$</td>
<td>Rounding errors $U(x \mid -1/2, 1/2)$. Simulating other distributions from $U(x \mid 0, 1)$</td>
<td></td>
</tr>
<tr>
<td>Pareto</td>
<td>$P(x \mid \alpha, \beta)$</td>
<td>$f(x) = \alpha \beta^\alpha x^{-(\alpha+1)}$</td>
<td>$\frac{\alpha \beta}{\alpha - 1}$ (if $\alpha > 1$)</td>
<td>$\frac{\alpha \beta^2}{(\alpha - 2)(\alpha - 1)^2}$ (if $\alpha > 2$)</td>
<td>Distribution of positive random quantities with heavy tails</td>
<td>Conjugate prior for uniform data with known lower bound</td>
</tr>
<tr>
<td>Exponential</td>
<td>$Ex(x \mid \lambda)$</td>
<td>$f(x) = \lambda e^{-\lambda x}$</td>
<td>$\frac{1}{\lambda}$</td>
<td>$\frac{1}{\lambda^2}$</td>
<td>Inter-event times for Poisson Process. Models lifetimes of non-ageing items.</td>
<td>Also parameterised in terms of $1/\lambda$. $Ga(x \mid 1, \lambda) \equiv Ex(x \mid \lambda)$</td>
</tr>
<tr>
<td>Gamma</td>
<td>$Ga(x \mid \alpha, \beta)$</td>
<td>$f(x) = \frac{\beta^\alpha x^{\alpha-1}e^{-\beta x}}{\Gamma(\alpha)}$</td>
<td>$\frac{\alpha}{\beta}$</td>
<td>$\frac{\alpha}{\beta^2}$</td>
<td>Times between k events for Poisson Process. Lifetimes of ageing items. Conjugate prior for exponential model.</td>
<td>Also parameterised in terms of $1/\beta$. $Ga(x \mid 1, \lambda) \equiv Ex(x \mid \lambda)$, $Ga(x \mid \mu/2, 1/2) \equiv \chi_\nu^2(x)$ $1/x = y \sim IGa(y \mid \alpha, \beta)$</td>
</tr>
<tr>
<td>Beta</td>
<td>$Be(x \mid \alpha, \beta)$</td>
<td>$f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)}$</td>
<td>$\frac{\mu}{\alpha + \beta}$</td>
<td>$\frac{\mu(1 - \mu)}{\alpha + \beta + 1}$</td>
<td>Useful model for variables with finite range. Conjugate prior for Binomial model.</td>
<td>Be${x \mid 1, 1} \equiv U(x \mid 0, 1)$. Can re-scale $Be(x \mid \alpha, \beta)$ to any finite range $[a, b]$ by $Y = (b-a)X + a$</td>
</tr>
<tr>
<td>Gaussian (Normal)</td>
<td>$N(x \mid \mu, \sigma^2)$</td>
<td>$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right]$</td>
<td>μ</td>
<td>σ^2</td>
<td>Empirically and theoretically (via CLT) a useful model. Also parameterised in terms of the precision $\lambda = 1/\sigma^2$</td>
<td>Y = $aX + b \sim N(y \mid a\mu + b, a^2\sigma^2)$ $Z = \frac{X - \mu}{\sigma} \sim N(z \mid 0, 1)$ $P[X \in (u, v)] = P[Z \in \left(\frac{u - \mu}{\sigma}, \frac{v - \mu}{\sigma} \right)]$</td>
</tr>
<tr>
<td>Student t</td>
<td>$St(x \mid \mu, \lambda, v)$</td>
<td>$f(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{\lambda^2}{v+1} \right)^{1/2}$</td>
<td>$\frac{\mu}{\sqrt{v+1}}$ (if $v > 1$)</td>
<td>$\frac{\mu}{\sqrt{v+1}}$ (if $v > 2$)</td>
<td>Useful alternative to Gaussian for random quantities with heavy tails</td>
<td>If $X \sim N(x \mid 0, 1)$ and $Y \sim \chi_\nu^2(y)$ independent then $\frac{X}{\sqrt{v+1}} \sim t_v$. If $Y = \sqrt{X}(x - \mu)$ then $Y \sim t_v(y)$. $t_1 \equiv$ Cauchy. $t_v^2 \equiv F_1.v$.</td>
</tr>
</tbody>
</table>

CONTINUOUS DISTRIBUTIONS
Name	Notation	p.d.f.	$\mathbb{E}[X	\theta]$	$\mathbb{V}[X	\theta]$	Applications	Comments		
Multinomial	$\text{Mu}(x	n, \theta)$	$p(x) = \frac{n!}{\prod_{i=1}^{k} x_i!} \prod_{i=1}^{k} \theta_i^{x_i}$	$\mathbb{E}[x_i] = n \theta_i$	$\mathbb{V}[x_i] = n \theta_i (1 - \theta_i)$	Counts of events with more than two possible outcomes	Generalisation of the Binomial distribution			
Dirichlet	$\text{Di}(x	\alpha)$	$f(x) = \frac{\Gamma\left(\sum \alpha_i\right)}{\prod \Gamma(\alpha_i)} \prod_{i=1}^{k} x_i^{\alpha_i - 1}$	$\mathbb{E}[x_i] = \frac{\alpha_i}{\sum \alpha_i}$	$\mathbb{V}[x_i] = \frac{\mu_i(1 - \mu_i)}{1 + \sum \mu_i \mu_j}$	Distribution of probabilities of exclusive events.	Generalisation of the Beta distribution, Conjugate prior for multinomial data			
Normal-Gamma	$\text{NG}(x, y	\mu, \lambda, \alpha, \beta)$	$f(x, y) = \mathcal{N}(x	\mu, \mu \lambda^{-1})\mathcal{G}(y	\alpha, \beta)$	$\mathbb{E}[x] = \mu$	$\mathbb{V}[x] = \frac{\beta}{\kappa(\alpha - 1)}$	Conjugate prior for Gaussian data, both parameters unknown	The marginal distribution of x is $\text{St}(x	\mu, \kappa \alpha \beta^{-1}, 2\mu)$
Multivariate	$\text{N}_k(x	\mu, \Lambda)$	$f(x) = \frac{1}{(2\pi)^{k/2}} \exp\left[-\frac{1}{2} (x - \mu)' \Lambda (x - \mu) \right]$	μ	Λ^{-1}	See univariate case	Usually parameterised in terms of the covariance matrix $\Sigma = \Lambda^{-1}$			
Multivariate	$\text{St}_k(x	\mu, \Lambda, v)$	$f(x) = \frac{1}{\Gamma((v + k)/2)} \frac{(\nu \pi)^{k/2}}{(\nu \pi)^{k/2}} \Gamma((v/2)^{v+1}) \left[1 + \frac{1}{v} (x - \mu)' \Lambda (x - \mu) \right]^{-(v+k)/2}$	μ	Λ^{-1}	See univariate case	Usually parameterised in terms of the covariance matrix $\Sigma = \Lambda^{-1}$			