Continuum Mechanics

Answer four questions. You are advised not to answer more than four questions: if you do, only your best four will be counted.

(i) Write down in full the following expressions:

(a) \(\delta_{ij}U_{ij} \),
(b) \(t_i = \varepsilon_{ijk}T_{jk} \),
(c) \(V = \varepsilon_{ijk}u_i v_j w_k \).

(6 marks)

(ii) Use the relation \(\varepsilon_{ijk}\varepsilon_{ilm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl} \) to prove the identity

\(\nabla^2 a = \nabla(\nabla \cdot a) - \nabla \times \nabla \times a. \)

(9 marks)

(iii) New Cartesian coordinates, \(x_1', x_2', x_3' \), are obtained from the old ones, \(x_1, x_2, x_3 \), by a rotation about the \(x_3 \)-axis through an angle \(\theta \). The transformation matrix from the old to the new coordinates is given by

\[
\hat{A} = \begin{pmatrix}
\cos\theta & \sin\theta & 0 \\
-\sin\theta & \cos\theta & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

The matrix of tensor \(T \) in the old coordinates is given by

\[
\hat{T} = \begin{pmatrix}
3 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

(a) Calculate the matrix of tensor \(T \) in the new coordinates.

[You can use without proof the relation \(\hat{T}' = \hat{A}\hat{T}\hat{A}^T \) between the matrices of tensor \(T \) in the old and new coordinates.] (7 marks)

(b) You are given that the matrix of tensor \(T \) in the new coordinates is diagonal and the angle \(\theta \) is positive and acute. Determine \(\theta \). (3 marks)
(i) Derive the mass conservation equation in Lagrangian coordinates,

$$\rho(\xi, t)J(\xi, t) = \rho_0(\xi),$$

where $$\xi = (\xi_1, \xi_2, \xi_3)$$ are the Lagrangian coordinates, $$\rho_0$$ and $$\rho$$ are the density at the initial time, $$t = 0$$, and current time $$t$$ respectively, and $$J$$ is the Jacobian of transformation from the initial coordinates $$(\xi_1, \xi_2, \xi_3)$$ to the current coordinates $$(x_1, x_2, x_3)$$.

$$J(\xi, t) = \frac{D(x_1, x_2, x_3)}{D(\xi_1, \xi_2, \xi_3)} = \begin{vmatrix} \frac{\partial x_1}{\partial \xi_1} & \frac{\partial x_1}{\partial \xi_2} & \frac{\partial x_1}{\partial \xi_3} \\ \frac{\partial x_2}{\partial \xi_1} & \frac{\partial x_2}{\partial \xi_2} & \frac{\partial x_2}{\partial \xi_3} \\ \frac{\partial x_3}{\partial \xi_1} & \frac{\partial x_3}{\partial \xi_2} & \frac{\partial x_3}{\partial \xi_3} \end{vmatrix}.$$

(9 marks)

(ii) A body is subject to the deformation

$$x_1 = f(\xi_1)e^{-k\xi_3}, \quad x_2 = \xi_2, \quad x_3 = f(\xi_1)e^{k\xi_3},$$

where $$f(\xi_1)$$ is a positive, differentiable, monotonically increasing function, and $$k$$ is a positive constant.

(a) Show that, after the deformation, the density $$\rho$$ is given by

$$\rho = \frac{\rho_0}{2kf(\xi_1)f'(\xi_1)},$$

where $$\rho_0$$ is the density in the initial state.

(6 marks)

(b) You are given that $$\xi_1 \geq 0$$, and $$x_1 = 1/k$$ when $$\xi_1 = \xi_3 = 0$$. Determine the form of the function $$f(\xi_1)$$ if the density does not change during the deformation.

(10 marks)
(i) Write down the expression for the surface traction, \(t \), in terms of the stress tensor, \(T \), and the unit normal to the surface, \(n \). Express it both in the vector and coordinate form.

(2 marks)

(ii) You are given that \(S \) is the surface of a simply connected volume \(V \).

(a) Introducing the notation \(a_l = x_j T_{kl} \) and using Gauss’s theorem show that

\[
\int_S x \times t \, dS = e_i \varepsilon_{ijk} \int_V \left(T_{kj} + x_j \frac{\partial T_{kl}}{\partial x_l} \right) \, dV.
\]

(5 marks)

(b) Use equation (\(* \)) and the momentum equation

\[
\frac{d}{dt} \int_V \rho x \times v \, dV = \int_S x \times t \, dS + \int_V \rho x \times b \, dV
\]

to prove that \(T \) is a symmetric tensor.

[You can use without proof the relation \(\frac{d}{dt} \int_V f \rho \, dV = \int_V \rho \frac{\partial f}{\partial t} \, dV \), where \(V \) is a volume frozen in a continuum]

(9 marks)

(iii) You are given that in a continuum that is in equilibrium the stress has the form \(T_{ij} = -p \delta_{ij} \), where \(\delta_{ij} \) is the Kronecker delta symbol and \(p \) is the pressure.

(a) Show that in this case the equilibrium equation

\[
\frac{\partial T_{ij}}{\partial x_j} + \rho b_i = 0
\]

reduces to

\[
\frac{\partial p}{\partial x_i} = \rho b_i.
\]

(2 marks)

(b) You are also given that the continuum occupies the half-space \(z \geq 0 \) in Cartesian coordinates \(x, y, z \). There is a constant body force in the negative \(z \)-direction, \(b = (0, 0, -g) \). The pressure \(p \) is related to the continuum density \(\rho \) by \(p = \rho_0(\rho/\rho_0)^\alpha \), where \(0 < \alpha < 1 \) is a constant, and \(p = \rho_0 = \text{const} \) and \(\rho = \rho_0 = \text{const} \) at \(z = 0 \). Determine the dependence of \(p \) and \(\rho \) on \(z \).

(7 marks)
The motion of an ideal fluid is called potential if the velocity can be written in the form $\mathbf{v} = \nabla \varphi$, φ being called the velocity potential. By using Euler’s equation for incompressible homogeneous fluid written in the Gromeka-Lamb form,

$$\frac{\partial \mathbf{v}}{\partial t} + (\nabla \times \mathbf{v}) \times \mathbf{v} = -\nabla \left(\frac{\rho}{\rho} + \frac{1}{2} \|\mathbf{v}\|^2 + \Pi \right),$$

where Π is the body force potential, $b = -\nabla \Pi$, derive the Lagrange-Cauchy integral for fluid potential motion,

$$\frac{\partial \varphi}{\partial t} + \frac{\rho}{\rho} + \frac{1}{2} \|\mathbf{v}\|^2 + \Pi = f(t),$$

where $f(t)$ is an arbitrary function of time. \hspace{1cm} (5 marks)

You are given that water occupies a half-space $z < 0$ in Cartesian coordinates x, y, z with the z-axis anti-parallel to the gravity acceleration g. The water is in equilibrium. Use the Lagrange-Cauchy integral to show that the water pressure is given by

$$p = p_a + g \rho h,$$

where p_a is the atmospheric pressure (i.e. $p = p_a$ at $z = 0$), ρ is the water density, and $h = -z$ is the water depth. \hspace{1cm} (4 marks)

Prove Archimedes’ law: the pressure force exerted on the surface of a body immersed in water is in the vertical direction, and its magnitude is equal to the weight of water displaced by the body. \hspace{1cm} (11 marks)

A bathisphere has a spherical shape with the radius $R = 1$ m. Its mass is 5×10^3 kg. The bathisphere is attached to a floating ship by a steel rope and immersed in water. What is the tension in the rope?

[You can take the gravity acceleration $g = 10$ m s$^{-2}$ and the water density $\rho = 10^3$ kg m$^{-3}$.] \hspace{1cm} (5 marks)
5 (i) You are given that, in equilibrium, the stress tensor T satisfies the equation written in Cartesian coordinates x_1, x_2, x_3,

$$\frac{\partial T_{ij}}{\partial x_j} + \rho b_i = 0, \quad (\ast)$$

where T_{ij} are the components of the stress tensor T, ρ is the density, and b_i are the components of the body force b. You are also given that, in linear elasticity, the Cartesian components of the stress tensor are given by

$$T_{ij} = \lambda \delta_{ij} \frac{\partial u_k}{\partial x_k} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right),$$

where u_i are the Cartesian components of the displacement u, and λ and μ are the Lamé constants. Show that, in the linear elasticity, equation (\ast) reduces to

$$(\lambda + \mu) \nabla (\nabla \cdot u) + \mu \nabla^2 u + \rho b = 0. \quad (\dagger)$$

(4 marks)

(ii) There is an elastic spherical shell of internal radius a and external radius b (see the figure). The space inside the shell was filled with water through a small hole, and after that the hole was tightly sealed. Then the shell was put in a cold place with the temperature below zero. As a result the water froze and turned into ice. Calculate the internal radius of the shell, R, after the water froze.

[You can take the densities of water and ice equal to $\rho \approx 1000 \text{ kg m}^{-3}$ and $\rho_i \approx 917 \text{ kg m}^{-3}$ respectively.] (4 marks)

![Diagram of a spherical shell with water inside and elastic material outside]

(a) You are given that there is no body force, $b = 0$. You can assume that inside the shell the displacement vector is $u = u(r)e_r$, where e_r is the unit vector in the radial direction in the spherical coordinate system r, θ, ϕ with the origin at the shell centre. Use equation (\dagger) to show that

$$\nabla (\nabla \cdot u) = 0.$$

Show that the displacement in the shell is given by

$$u = Ar + \frac{B}{r^2},$$

where A and B are constants.

[You can use without proof that, for $u = u(r)e_r$, $\nabla^2 u = \nabla(\nabla \cdot u)$ and $\nabla \cdot u = \frac{1}{r^2} \frac{d}{dr} \left(r^2 u \right).$] (5 marks)
(b) You are given that the surface traction at the external boundary of the shell is given by

\[t(b) = \left(\lambda \frac{d(r^2u)}{dr} \bigg|_{r=b} + 2\mu \frac{du}{dr} \bigg|_{r=b} \right) e_r. \]

Use the boundary conditions \(u = R - a \) at \(r = a \) and \(t = 0 \) at \(r = b \) to calculate \(A \) and \(B \), where \(R \) was calculated in part (ii). Determine the external radius of the deformed shell if \(a = 10 \) cm, \(b = 12 \) cm, and \(\lambda = \mu \).

(12 marks)

End of Question Paper