SCHOOL OF MATHEMATICS AND STATISTICS

Analytic Number Theory

2 hours 30 minutes

Attempt all the questions. The allocation of marks is shown in brackets.

Note that the questions do not carry equal marks: Q1 is worth 29 marks, Q2 is worth 18 marks, Q3 is worth 20 marks, and Q4 is worth 33 marks.

Please leave this exam paper on your desk
Do not remove it from the hall

Registration number from U-Card (9 digits)
to be completed by student
1 (i) State Bertrand’s Postulate. (2 marks)

Let $n \geq 4$. Using Bertrand’s Postulate, show that

(a) the sum $\sum_{k=1}^{n} \frac{1}{k}$ is not an integer, (5 marks)

(b) $n!$ is not a square. (3 marks)

(ii) Let $f, g : \mathbb{R} \to \mathbb{R}$ be two functions. Define what it means for f and g to be asymptotic. Define the prime counting function $\pi(x)$ and state the Prime Number Theorem. (3 marks)

(iii) Fix a positive integer k. For $x \geq 1$ let $\pi_k(x)$ be the number of primes p such that $p^k \leq x$.

(a) Using the Prime Number Theorem, show that

$$\pi_k(x) \sim \frac{k \sqrt[3]{x}}{\ln x}.$$ (4 marks)

(b) For $0 < a < b$ evaluate

$$\lim_{x \to \infty} \frac{\pi_k(bx)}{\pi_k(ax)}.$$

Hence, or otherwise, prove that for x large enough there exists a prime p such that $ax < p^k \leq bx$. (8 marks)

(c) Using part (b) prove that there are infinitely many primes p such that the decimal representation of p^k begins with 5. (4 marks)
2. (i) (a) Let \(f, g_1, g_2 \) be arithmetic functions with \(f \) completely multiplicative. Show the following distribution property

\[
f \cdot (g_1 \ast g_2) = (f \cdot g_1) \ast (f \cdot g_2).
\]

Here (and in part (b) below) “\(\ast \)” refers to the usual pointwise multiplication of arithmetic functions. (3 marks)

(b) Hence show that, for \(a_1, a_2, a_3 \in \mathbb{Z} \),

\[
N_{a_1} \ast N_{a_2} \ast N_{a_3} = N_{a_3} \cdot (N_{a_1-a_3} \ast N_{a_2-a_3} \ast u),
\]

where \(N_\alpha(n) = n^\alpha \) and \(u(n) = 1 \) for all \(n \). (3 marks)

(ii) Write down the Euler product expansion of \(D(s, f) \) for a multiplicative arithmetic function \(f \). Hence show that if \(f \) is completely multiplicative then

\[
D(s, f) = \prod_p \left(1 - \frac{f(p)}{p^s} \right)^{-1}.
\]

(4 marks)

(iii) (a) Show the identity

\[
1 + 4x + 9x^2 + 16x^3 + \ldots = \frac{1 - x^2}{(1 - x)^4}.
\]

(3 marks)

(b) Recall the arithmetic function \(\sigma_0(n) := \sum_{d|n} 1 \). Using the fact that \(\sigma_0 \) is multiplicative and part (a) above, prove the formal identity:

\[
D(s, \sigma_0^2) = \frac{\zeta(s)^4}{\zeta(2s)}.
\]

(5 marks)
(i) Recall that the Riemann zeta function \(\zeta(s) \) is defined for \(\text{Re}(z) > 1 \) by
\[
\zeta(s) := \sum_{n \geq 1} \frac{1}{n^s}.
\]

(a) Write down the Euler product for \(\zeta(s) \), indicating clearly in what region of the complex plane the formula is valid. (2 marks)

(b) The series
\[
\eta(s) := \sum_{n \geq 1} \frac{(-1)^{n+1}}{n^s}
\]
is convergent and analytic for \(\text{Re}(s) > 0 \). Derive a relation between \(\eta(s) \) and \(\zeta(s) \). Using this, write down, without proof, the analytic continuation of \(\zeta(s) \) to \(\text{Re}(s) > 0 \). (8 marks)

(c) State the Riemann Hypothesis. (2 marks)

(ii) Recall that \(B_n(x) \), the \(n \)-th Bernoulli polynomial, is defined by the generating series
\[
\frac{te^{xt}}{e^t - 1} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!}.
\]
Show that \(B_n(x + 1) - B_n(x) = nx^{n-1} \) for all \(n \geq 0 \). Deduce that
\[
1^{n-1} + 2^{n-1} + \ldots + N^{n-1} = \frac{B_n(N + 1) - B_n(1)}{n}
\]
for all integers \(n, N \geq 1 \). (8 marks)
(i) Let χ be a Dirichlet character mod k. Define the Dirichlet L-series $L(s, \chi)$. Describe a region where $L(s, \chi)$ is analytic and convergent, dependent on χ. (3 marks)

(ii) For real $a > 0$ and $\text{Re}(s) > 1$, the Hurwitz zeta function is given by

$$\zeta(s, a) = \sum_{n=0}^{\infty} \frac{1}{(n+a)^s}.$$

(a) Show that

$$\zeta \left(s, \frac{1}{2} \right) = (2^s - 1)\zeta(s).$$

(4 marks)

(b) If χ is a Dirichlet character mod k, then show that

$$L(s, \chi) = k^{-s} \sum_{r=0}^{k-1} \chi(r) \zeta \left(s, \frac{r}{k} \right).$$

(5 marks)

(iii) (a) List all characters of $(\mathbb{Z}/8\mathbb{Z})^\times$. (5 marks)

(b) For the nontrivial characters in your list, show explicitly the corresponding Dirichlet L-series does not vanish at $s = 1$. (3 marks)

(c) Verify using part (a) that for all primes p:

$$\sum_{\chi} \chi(5)^{-1} \chi(p) = \begin{cases} 4 & \text{if } p \equiv 5 \text{ mod } 8 \\ 0 & \text{otherwise} \end{cases}$$

where the sum is over all characters χ of $(\mathbb{Z}/8\mathbb{Z})^\times$. (4 marks)

(iv) Prove that there are infinitely many primes congruent to 5 mod 8.

(You may assume that for any character χ the sum $\sum_{p \nmid 8} \sum_{n \geq 2} \frac{\chi(p)^n}{np^{ns}}$ converges to a finite limit as $s \to 1$ and that $L(1, \chi) \neq 0$.) (9 marks)

End of Question Paper