Attempt all the questions. The allocation of marks is shown in brackets.

Throughout the paper K denotes a subfield of \mathbb{C} which contains \mathbb{Q}.

All field extensions are finite.
(i) State, without proof, the Theorem of the Primitive Element (TPE).

(ii) Let $K \subset L$ be an extension of fields.
 (a) What does it mean for $\theta : L \to L$ to be a K-automorphism of L?

 (b) Let $\alpha \in L$ be such that $f(\alpha) = 0$ for some polynomial $f(x) \in K[x]$.
 If θ is a K-automorphism of L, show that $\theta(\alpha)$ is a root of $f(x)$
 too.

 (c) Define the Galois group $\text{Gal}(L/K)$ of the field extension $K \subset L$, and
 say what it means in terms of this group, for $K \subset L$ to be a Galois
 extension. Given an equivalent formulation involving splitting fields.

(iii) Let $K \subseteq M \subseteq L$ be finite extensions of fields. Suppose that L/K is Galois.
 (a) Prove that L/M is Galois.

 (b) If M/K is Galois, prove that $\varphi(M) \subseteq M$ for all $\varphi \in \text{Gal}(L/K)$.

 (c) If M/K is Galois, deduce that $\text{Gal}(L/M) \triangleleft \text{Gal}(L/K)$, and that
 $\text{Gal}(M/K) \cong \frac{\text{Gal}(L/K)}{\text{Gal}(L/M)}$.
2. (i) Let K be a field, and let $f \in K[x]$ be a polynomial of degree n.
(a) Define the Galois group $\text{Gal}(f/K)$ of f. \hfill (1 mark)
(b) Show that there is an injective homomorphism
\[\text{Gal}(f/K) \rightarrow S_n, \]
where S_n denotes the symmetric group on n letters. \hfill (7 marks)
(c) Deduce that the splitting field of a polynomial of degree n over K has degree at most $n!$ over K. \hfill (2 marks)

(ii) What are the Galois groups (up to isomorphism) for the following irreducible quartics over \mathbb{Q}?
(a) $x^4 - 3$. \hfill (4 marks)
(b) $x^4 + 1$. \hfill (3 marks)
(c) $x^4 + x^3 + x^2 + x + 1$. \hfill (2 marks)

3. Let $f = x^4 - 2x^2 - 6 \in \mathbb{Q}[x]$ and let M denote the splitting field of f over \mathbb{Q}. Let $\alpha = \sqrt{1 + \sqrt{7}}$.
(i) Show that the roots of f are $\pm \alpha, \pm \frac{i\sqrt{6}}{\alpha}$, and deduce that $M = \mathbb{Q}(\alpha, i\sqrt{6})$. \hfill (4 marks)
(ii) It is given that $[M : \mathbb{Q}] = 8$. Specify the elements of $\text{Gal}(M/\mathbb{Q})$ by giving their effect on each of α and $i\sqrt{6}$, justifying your answer. \hfill (8 marks)
(iii) Show that there exist automorphisms $\varphi, \psi \in \text{Gal}(M/\mathbb{Q})$ such that φ has order 4, ψ has order 2, and $\text{Gal}(M/\mathbb{Q}) = \langle \varphi, \psi \rangle$. \hfill (5 marks)
(iv) Write $\psi \varphi \psi^{-1}$ in the form $\varphi^i \psi^j$. To which well-known group is $\text{Gal}(M/\mathbb{Q})$ isomorphic? \hfill (3 marks)
(v) Write $L = \mathbb{Q} \left(\alpha + \frac{i\sqrt{6}}{\alpha} \right)$. Using the Galois correspondence, find $[L : \mathbb{Q}]$. \hfill (5 marks)
(i) Let a, b be two coprime positive integers that are not squares. Let $L = \mathbb{Q}(\sqrt{a}, \sqrt{b})$. Compute the Galois group $\text{Gal}(L/\mathbb{Q})$ and write down the effect of every element on \sqrt{a} and \sqrt{b}. (3 marks)

(ii) Prove that the Galois group over \mathbb{Q} of one of the polynomials $x^4 + x + \frac{3}{4}$ and $x^4 + x - \frac{3}{4}$ is A_4 and that the other is S_4. (7 marks)

[You may assume that the resolvent cubic for quartics of the form $x^4 + ax + b$ is given by $y^3 - 4by - a^2$, and that both have discriminant $256b^3 - 27a^4$.]

(iii) Show that $x^5 - 30x + 12$ over \mathbb{Q} is not soluble by radicals by proving that its Galois group isomorphic to S_5. (Hint. You may use the following fact without proof: Any transitive subgroup of S_5 which contains a transposition is equal to S_5.) (13 marks)

End of Question Paper