Answer four questions. You are advised not to answer more than four questions: if you do, only your best four will be counted.

1. (a) Given a topological space \(X \), define the set \(\pi_0(X) \). You should include a proof that the relevant equivalence relation is in fact an equivalence relation.

(b) Consider \([0,1]\) as a based space with 0 as the basepoint. For \(n \geq 3 \) we define
\(X_n = \{ z \in \mathbb{C} \mid z^n \in [0,1] \} \):

\[X_7 \quad X_8 \quad X_9 \]

(i) For which \(n \) and \(m \) (with \(n, m \geq 3 \)) is \(X_n \) homotopy equivalent to \(X_m \)?

(ii) For which \(n \) and \(m \) (with \(n, m \geq 3 \)) is \(X_n \) homeomorphic to \(X_m \)?

Justify your answers carefully.

(c) Give examples as follows, with justification:

(1) A based space \(W \) with \(|\pi_1(W)| = 8 \).

(2) A space \(X \) with two points \(a, b \in X \) such that \(\pi_1(X, a) \) is not isomorphic to \(\pi_1(X, b) \).

(3) A space \(Y \) such that \(H_0(Y) \simeq H_2(Y) \simeq H_4(Y) \simeq H_6(Y) \simeq \mathbb{Z} \) and all other homology groups are trivial.
2 Are the following true or false? Justify your answers.
 (a) S^6 is a Hausdorff space. (4 marks)
 (b) The Klein bottle is a retract of $S^1 \times S^1 \times S^1$. (4 marks)
 (c) There is a connected space X with $\pi_1(X) \simeq \mathbb{Z}/2$ and $H_1(X) \simeq \mathbb{Z}$. (4 marks)
 (d) There is a short exact sequence $\mathbb{Z}/9 \to \mathbb{Z}/99 \to \mathbb{Z}/11$. (4 marks)
 (e) If K is a simplicial complex and L is a subcomplex and $H_3(K) = 0$ then $H_3(L) = 0$. (4 marks)
 (f) If K and L are simplicial complexes and $f: |K| \to |L|$ is a continuous map then there is a simplicial map $s: K \to L$ such that f is homotopic to $|s|$. (5 marks)

3 Let K and L be abstract simplicial complexes.
 (a) Define what is meant by a simplicial map from K to L. (3 marks)
 (b) Let $s, t: K \to L$ be simplicial maps. Define what it means for s and t to be directly contiguous. (3 marks)
 (c) Prove that if s and t are directly contiguous, then the resulting maps $|s|, |t|: |K| \to |L|$ are homotopic. (3 marks)
 (d) Prove that if s and t are directly contiguous, then the resulting maps $s_*, t_*: H_*(K) \to H_*(L)$ are the same. (You can prove the main formula just for $n = 3$ rather than general n.) (9 marks)
 (e) How many injective simplicial maps are there from $\partial \Delta^2$ to itself? Show that no two of them are directly contiguous. (7 marks)
4 Let $U \xrightarrow{i} V \xrightarrow{p} W$ be a short exact sequence of chain complexes and chain maps.

(a) Define what is meant by saying that the above sequence is short exact.

(3 marks)

Now recall that a snake for the above sequence is a system (c, w, v, u, a) such that

- $c \in H_n(W)$;
- $w \in Z_n(W)$ is a cycle such that $c = [w]$;
- $v \in V_n$ is an element with $p(v) = w$;
- $u \in Z_{n-1}(U)$ is a cycle with $i(u) = d(v) \in V_{n-1}$;
- $a = [u] \in H_{n-1}(U)$.

(b) Prove that for each $c \in H_n(W)$ there is a snake starting with c. (8 marks)

(c) Prove that if two snakes have the same starting point, then they also have the same endpoint. (10 marks)

(d) Suppose that the differential $d: V_{n+1} \to V_n$ is surjective. Show that any snake starting in $H_n(W)$ ends with zero. (4 marks)

5 Consider a simplicial complex K with subcomplexes L and M such that $K = L \cup M$. Use the following notation for the inclusion maps:

$$
\begin{array}{ccc}
L \cap M & \xrightarrow{i} & L \\
\downarrow & & \downarrow \\
M & \xrightarrow{g} & K.
\end{array}
$$

(a) State the Seifert-van Kampen Theorem (in a form applicable to simplicial complexes and subcomplexes as above). (4 marks)

(b) State the Mayer-Vietoris Theorem. (5 marks)

(c) State a theorem about the relationship between π_1 and H_1. (3 marks)

(d) Suppose that $|L|$, $|M|$ and $|L \cap M|$ are all homotopy equivalent to S^1. Suppose that the maps i and j both have degree two.

1. Find a presentation for $\pi_1|K|$. (3 marks)

2. Find $H_1(K)$. In particular, you should express each nonzero group as a direct sum of terms like \mathbb{Z} or \mathbb{Z}/n. (10 marks)

End of Question Paper