SCHOOL OF MATHEMATICS AND STATISTICS
Optics and Symplectic Geometry

Attempt all the questions. The allocation of marks is shown in brackets.

Through the paper I denotes an identity matrix and \(J \) denotes a matrix of the form
\[
\begin{bmatrix}
0 & I \\
-I & 0
\end{bmatrix}
\]. All matrices have real entries. The standard symplectic form \(\Omega \) on \(\mathbb{R}^{2n} \) is defined by
\[
\Omega(Z, Z') = Q \cdot P' - P \cdot Q',
\]
where \(Z = (Q, P) \) and \(Z' = (Q', P') \) are elements of \(\mathbb{R}^{2n} \).

1. (i) Calculate in detail, using row operations or otherwise, the determinant of the \(2n \times 2n \) matrix \(J \). \hspace{1cm} (7 marks)

(ii) Define what it means for a \(2n \times 2n \) matrix \(S \) to be symplectic. \hspace{1cm} (2 marks)

(iii) Prove that the \(2n \times 2n \) matrix \(J \) is symplectic. \hspace{1cm} (3 marks)

(iv) (a) Let
\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\]
and
\[
\begin{bmatrix}
A' & B' \\
C' & D'
\end{bmatrix}
\]
be \(2n \times 2n \) matrices in block form, where \(A, B, C, D, A', B', C' \) and \(D' \) denote \(n \times n \) matrices. Write down the product
\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
\begin{bmatrix}
A' & B' \\
C' & D'
\end{bmatrix}
\]
in block form. \hspace{1cm} (3 marks)

(b) Let \(S = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \) be \(2n \times 2n \) matrix written in block form. Prove that \(S \) is symplectic if and only if the three equations
\[
A^T C = C^T A, \quad B^T D = D^T B, \quad A^T D - C^T B = I,
\]
hold. \hspace{1cm} (10 marks)
2

(i) Give a definition of a symplectic form on \mathbb{R}^{2n}. \hspace{1cm} (5 marks)

(ii) Let σ be a symplectic form on \mathbb{R}^2. Show that there is a basis $\{v_1, v_2\}$ for \mathbb{R}^2 such that when vectors Z, Z' are expressed as $Z = qv_1 + pv_2$, $Z' = q'v_1 + p'v_2$ then

$$\sigma(Z, Z') = qp' - p'q'.$$

\hspace{1cm} (10 marks)

(iii) Describe how the coordinates (q, p) of a light ray are introduced. Illustrate this with a sketch. \hspace{1cm} (4 marks)

(iv) Suppose that there are two vertical axes, q_1 and q_2, erected at z_1 and z_2 respectively. Derive the relation between the two coordinates of a ray, (q_1, p_1) and (q_2, p_2) under the assumption that the ray is almost horizontal. Write this relation in matrix form. \hspace{1cm} (6 marks)

3

(i) Consider \mathbb{R}^{2n} with symplectic form σ. Give the definition of a Lagrangian subspace. Define what it means for two Lagrangian subspaces of \mathbb{R}^{2n} to be transversal. Show that two Lagrangian subspaces, L and L', are transversal if and only if $L \cap L' = \{0\}$.

\hspace{1cm} (5 marks)

(ii) Verify that the following subspace of (\mathbb{R}^4, Ω)

$$L = \text{span}\{(3, 2, -4, 1), (2, 4, 2, -5)\}$$

is Lagrangian. Is it transversal to $\mathbb{R}^2 \times \{0\}$ and $\{0\} \times \mathbb{R}^2$? \hspace{1cm} (9 marks)

(iii) Denote the standard symplectic form on \mathbb{R}^{2n} by Ω, as usual. On \mathbb{R}^{4n} define $\sigma : \mathbb{R}^{4n} \times \mathbb{R}^{4n} \to \mathbb{R}$ by

$$\sigma((X_1, X_2), (Y_1, Y_2)) = \Omega(X_1, Y_1) - \Omega(X_2, Y_2),$$

where $X_1, X_2, Y_1, Y_2 \in \mathbb{R}^{2n}$.

(a) Verify that σ is a symplectic form on \mathbb{R}^{4n}. \hspace{1cm} (5 marks)

(b) Let S be an invertible $2n \times 2n$ matrix. Show that S is symplectic if and only if the 'graph' of S,

$$G = \{(X, SX) \mid X \in \mathbb{R}^{2n}\}$$

is a Lagrangian subspace of $(\mathbb{R}^{4n}, \sigma)$. (You can use without proof that $S \in Sp(2n)$ if and only if $\Omega(X, Y) = \Omega(SX, SY)$ for all $X, Y \in \mathbb{R}^{2n}$. \hspace{1cm} (6 marks)

Continued
Consider propagation of a ray in \mathbb{R}^3. In the Cartesian coordinates q_1, q_2, z a light ray crosses the plane $z = z_0$ at point (q_1, q_2), and the plane $z = z'_0$ at point (q'_1, q'_2). The angles between the q_1-axis and the ray and between the q_2-axis and the ray are equal to $\frac{\pi}{2} - \varphi_1$ and $\frac{\pi}{2} - \varphi_2$ respectively, where φ_1 and φ_2 are small. Hence, the unit vector v in the ray direction can be approximated by $(\varphi_1, \varphi_2, 1)$. The diffraction index n is constant.

(a) Show that the old, (q_1, q_2, p_1, p_2), and new, (q'_1, q'_2, p'_1, p'_2), coordinates of the ray, where $p_1 = n\varphi_1$ and $p_2 = n\varphi_2$, are related by

\[
\begin{bmatrix}
q'_1 \\
q'_2 \\
p'_1 \\
p'_2
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & \frac{z'_0 - z_0}{n} & 0 \\
0 & 1 & 0 & \frac{z'_0 - z_0}{n} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
q_1 \\
qu_2 \\
p_1 \\
p_2
\end{bmatrix}.
\]

(*)

(6 marks)

(b) Using the criterion given in part (iv)(b) of question 1 or otherwise prove that the 4×4 matrix in (*) is symplectic. (2 marks)

(ii) The Fermat principle states that the light propagates between two points, A and B, along a path that minimizes the travel time. The speed of light in a medium is c/n, where c, a constant, is the speed of light in empty space, and $n \geq 1$ is the refraction index of the medium.

(a) You are given that the refraction index is equal to n for $z < 0$, and n' for $z > 0$. Use the Fermat principle to show that the refracted ray is in the plane determined by the incoming ray and the normal to the surface $z = 0$. (13 marks)

(b) The angles between the incoming ray and the z-axis and between the refracted ray and the z-axis are equal to θ and θ'. Use the Fermat principle to show that they are related by Snell's law:

\[n \sin \theta = n' \sin \theta'.\] (4 marks)

End of Question Paper