Rings and Groups

Answer Question 1 and three other questions. You are advised not to answer more than three of the questions 2 to 5: if you do, only your best three will be counted.

1

(i) Use Euclid’s algorithm to find the inverse of 25 in the ring \mathbb{Z}_{47}. \(\text{(6 marks)} \)

(ii) Is each of the following rings an integral domain? Justify your answer briefly.

(a) \mathbb{C}
(b) \mathbb{Z}_6
(c) \mathbb{Z}_{11}
(d) $\mathbb{Z}_{11}[x]$
(e) $\mathbb{Z}[\sqrt{-5}]$ \(\text{(8 marks)} \)

(iii) Write down all possible cycle types in S_4, together with the number of elements in S_4 of each type. Hence write down the class equation for S_4. Justify your answers. \(\text{(11 marks)} \)
2 (i) (a) What are the units in the ring \(\mathbb{Z}_{10} \)? Justify your answer, and for each unit give its multiplicative inverse.
\[(7 \text{ marks})\]

(b) Show that the group of units of \(\mathbb{Z}_{10} \) is cyclic.
\[(4 \text{ marks})\]

(ii) Let \(d \) be a square-free integer with \(d \neq 1 \). Recall that the norm of an element \(r = a + b\sqrt{d} \) of \(\mathbb{Z}[(\sqrt{d})] \), where \(a, b \in \mathbb{Z} \), is given by
\[N(a + b\sqrt{d}) = |a^2 - b^2d| \]

(a) Show that \(\mathbb{Z}[(\sqrt{-7})] \) has no element of norm 2. Hence show that any element of norm 4 or 8 is irreducible.
\[(8 \text{ marks})\]

(b) Write down an element of norm 8 in \(\mathbb{Z}[(\sqrt{-7})] \). Hence express 8 as a product of irreducible factors in \(\mathbb{Z}[(\sqrt{-7})] \) in two different ways, and deduce that \(\mathbb{Z}[(\sqrt{-7})] \) is not a unique factorisation domain. Justify your answer.
\[(6 \text{ marks})\]

3 (i) Are the following elements zero-divisors in the given rings? Justify your answers.

(a) \(3 \in \mathbb{Z} \)

(b) \(3 \in \mathbb{R} \)

(c) \(3 \in \mathbb{Z}_n \) where \(n = 123123123123123123123123 \)

(d) \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \text{Mat}_2(\mathbb{Z}) \)
\[(6 \text{ marks})\]

(ii) (a) Let \(R \) be an integral domain. Prove that the units in the polynomial ring \(R[x] \) are precisely the units in \(R \).
\[(8 \text{ marks})\]

(b) Find a non-constant polynomial in \(\mathbb{Z}_9[x] \) which is a unit, justifying your answer.
\[(3 \text{ marks})\]

(iii) Calculate the norm of \(4 + i \in \mathbb{Z}[i] \). Hence exhibit a prime number that is not irreducible in \(\mathbb{Z}[i] \). Does 13 have this property? Justify your answers carefully.
\[(8 \text{ marks})\]
4 (i) Let G be a group of order 10 with trivial centre.
 (a) Find the class equation for G, justifying your answer. \((5 \text{ marks}) \)
 (b) Find the number of elements of order 5 in G. \((6 \text{ marks}) \)
 (c) Let $h \in G$ be an element of order 5. Let $H = \langle h \rangle$, the subgroup generated by h. Use the class equation to show that H is a normal subgroup of G. \((4 \text{ marks}) \)

(ii) (a) Let B be a normal subgroup of a group A. Describe the quotient group A/B. (You need to specify what the elements are, how multiplication on A/B is defined, what the identity is, and what the inverse of a given element is, but you do not need to prove any of your assertions.) \((5 \text{ marks}) \)

 (b) Now let A be the cyclic group of order 4 with elements $1, a, a^2, a^3$. Let B be the subgroup generated by the element a^2. Show that the quotient group A/B is a cyclic group of order 2. \((5 \text{ marks}) \)

5 (i) Let G be a group of order 7.
 (a) Prove that G must be cyclic. \((4 \text{ marks}) \)
 (b) Hence find the class equation for G, justifying your answer carefully. \((6 \text{ marks}) \)

(ii) (a) State, without proof, the First Isomorphism Theorem for groups. \((2 \text{ marks}) \)

 (b) Consider a square with vertices labelled as shown.

 \[
 \begin{array}{cc}
 1 & 2 \\
 4 & 3 \\
 \end{array}
 \]

 Write D_4 for the group of symmetries of the square. Explain briefly how the action of D_4 on the vertices of the square gives rise to a homomorphism $f : D_4 \rightarrow S_4$. \((4 \text{ marks}) \)

 (c) Find the kernel and image of the above homomorphism f, justifying your answer. \((7 \text{ marks}) \)

 (d) What does the First Isomorphism Theorem tell us in this case? \((2 \text{ marks}) \)

End of Question Paper