A1 A plane is given by the equation
\[4x + 5y + 7z = 21 \]
and a line by the equation \(\mathbf{r} = (1, 2, 3) + \lambda(1, 2, -2) \), where \(\lambda \) is a real parameter.

(i) Show that the line does not intersect the plane. \(\text{(4 marks)} \)

(ii) Therefore, calculate the distance of the line to the plane. \(\text{(4 marks)} \)

(iii) Find the direction of the line of intersection of the two planes \(x + 3y - z = 5 \) and \(2(x - y) + 4z = 3 \). \(\text{(5 marks)} \)

A2 Let \(f(t) = t^3 - t^2 \) be a scalar function and \(\mathbf{V} = \left(\frac{1}{t}, t^2, t^3 \right) \) and \(\mathbf{W} = (t, \sin(t), 0) \) be vectors. Find \(\frac{d(f \mathbf{V})}{dt} \), \(\frac{d(\mathbf{V} \cdot \mathbf{W})}{dt} \) and \(\frac{d(\mathbf{V} \times \mathbf{W})}{dt} \). \(\text{(8 marks)} \)

A3 Stokes’ theorem may be written:
\[\oint_C \mathbf{G} \, d\mathbf{r} = \int_S (\nabla \times \mathbf{G}) \cdot \mathbf{n} \, dS \]

Indicate whether the following statements about Stokes’ theorem, as expressed here, are true or false

(i) The term \(\nabla \times \mathbf{G} \) is the curl of the vector field \(\mathbf{G} \).

(ii) The surface \(S \) is surrounded by a closed line \(C \).

(iii) \(\mathbf{n} \) is a unit vector parallel with the boundary \(C \).

(iv) \(\int_S dS \) is a surface integral, over the surface \(S \). \(\text{(4 marks)} \)
Section B

B1 (i) Consider the function

\[f(x, y) = \tan^{-1} \frac{y}{x} \]

Determine all partial derivatives to first and second order and show that

\[\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0. \]

Hint: \(\tan^{-1} \) (also called arctan) is the inverse function of the \(\tan \)-function and you are given that

\[\frac{d \tan^{-1} u}{du} = \frac{1}{1 + u^2}. \]

(12 marks)

(ii) A scalar function is given as

\[\phi(x, y, z) = x^2 - y \sin(x - z). \]

(a) Calculate the gradient of \(\phi(x, y, z) \), i.e. calculate \(\mathbf{V} = \nabla \phi \).

(3 marks)

(b) Using your result, calculate the divergence of \(\mathbf{V} \).

(4 marks)

(c) By explicit calculation, show that \(\nabla \times \mathbf{V} = 0 \).

(6 marks)
B2 (i) A vector field is given by
\[\mathbf{V} = r^2 \hat{r} + (a + r) \hat{\theta} + bz \hat{z} \]
in cylindrical polar coordinates, where \(a \) and \(b \) are positive constants. Calculate the divergence and curl of the vector field, given that the divergence and curl may be expressed in cylindrical coordinates as
\[\nabla \cdot \mathbf{V} = \frac{1}{r} \frac{\partial}{\partial r} (r V_1) + \frac{1}{r} \frac{\partial}{\partial \theta} (V_2) + \frac{\partial}{\partial z} (V_3) \]
and
\[\nabla \times \mathbf{V} = \frac{1}{r} \begin{vmatrix} \hat{r} & r \hat{\theta} & \hat{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ V_1 & rV_2 & V_3 \end{vmatrix} \]
respectively. Indicate where the field is irrotational. (10 marks)

(ii) Sketch the region of integration represented by the repeated integral
\[\int \int_R x y^2 \, dx \, dy \]
where \(R \) is the region such that \(x \geq 0 \), \(y \geq 0 \), and \(x^2 + y^2 \leq a^2 \). By transforming to plane polar coordinates, evaluate the integral. (15 marks)

B3 (i) A particle \(P \) with position vector \(\mathbf{r} \) moves in a plane polar \((r, \theta)\) coordinate system. Write down the relationship between the unit vectors \(\mathbf{i}, \mathbf{j} \) in Cartesian coordinates \((x, y)\) and the unit vectors \(\hat{r}, \hat{\theta} \) in plane polar coordinates \((r, \theta)\). Hence, or otherwise, show that the velocity \(\mathbf{v} \) of the particle may be expressed as
\[\mathbf{v} = \frac{d\mathbf{r}}{dt} = r \hat{r} + r \dot{\theta} \hat{\theta} \]
and find the component of the acceleration of the particle in the \(\hat{\theta} \) direction. (15 marks)

(ii) A magnetic field is given, in cylindrical polar coordinates \((r, \theta, z)\), as
\[\mathbf{H} = H_0 r^2 \hat{\theta}/a^2 \]
with \(r \leq a \), where \(H_0 \) and \(a \) are positive constants. The magnetic field vanishes for \(r > a \). Evaluate
\[\oint_C \mathbf{H} \cdot d\mathbf{r}, \]
where \(C \) is the circle \(z = 0, \, r = R \), described in the anticlockwise sense for \(R < a \). (10 marks)

End of Question Paper