SCHOOL OF MATHEMATICS AND STATISTICS

Spring Semester 2010-11

Differential Equations: Case Studies in Applied Mathematics

Two hours

Marks will be awarded for your best FOUR answers

A list of basic formulae and theorems for use as necessary is provided on the final sheet of the exam paper.

1. Consider a system of equations

\[\dot{x} = y + xF(r), \quad \dot{y} = -x + yF(r). \] (*)

where \(r^2 = x^2 + y^2. \)

(i) Use the variable substitution

\[x = r \cos \theta, \quad y = r \sin \theta, \]

to obtain the system of equations for \(r \) and \(\theta, \)

\[\dot{r} = rF(r), \quad \dot{\theta} = -1. \]

Thus show that system (*) has a periodic solution for each value of \(r_0 \) such that \(F(r_0) = 0. \) (10 marks)

(ii) By considering a small perturbation, \(r = r_0 + \delta, \) about \(r_0 \) and using a Taylor expansion of function \(F(r), \) show that this periodic solution is a stable limit cycle in the case \(F'(r_0) < 0, \) and it is an unstable limit cycle in the case \(F'(r_0) > 0. \) (8 marks)

(iii) For the case

\[F(r) = -(r - 1)(r^2 - 7r + 12) \]

find all the limit cycles and determine their stability. (7 marks)

Turn Over
A two-species-in-symbiosis system is described by the system of equations

\[
\frac{dx}{dt} = N_0 x \left(1 - \frac{x}{K_0} + \frac{y}{K_1}\right),
\]

\[
\frac{dy}{dt} = N_1 y \left(1 + \frac{x}{K_2} - \frac{y}{K_3}\right),
\]

where all the parameters are positive.

(i) Use the variable substitution

\[X = \frac{x}{K_0}, \quad Y = \frac{y}{K_3}, \quad T = N_0 t, \]

to rewrite this system in a dimensionless form

\[
\frac{dX}{dT} = X(1 - X + \beta_0 Y) \equiv f(X,Y),
\]

\[
\frac{dY}{dT} = \rho Y(1 - Y + \beta_1 X) \equiv g(X,Y),
\]

where \(\rho = N_1/N_0, \beta_0 = K_3/K_1 \) and \(\beta_1 = K_0/K_2 \). \(4 \text{ marks} \)

(ii) Find all critical points of this system. Which critical point corresponds to the successful symbiosis (that is, a non-zero state for both species)? What is the condition necessary for this critical point to be physically possible? \(9 \text{ marks} \)

(iii) Classify the critical point corresponding to the successful symbiosis. State if it is stable or unstable. \(12 \text{ marks} \)
A metal bar of length a has the temperature at one end held at 0°C for all $t > 0$, while its other end is thermally insulated. Hence the temperature in the bar, Θ, satisfies the boundary conditions

$$\Theta(0, t) = 0, \quad \frac{\partial \Theta}{\partial x}(a, t) = 0 \quad \text{for all } t > 0. \quad (\ast)$$

The temperature distribution along the bar at $t = 0$ is given by

$$\Theta(x, 0) = \Theta_0 \left(\sin \frac{\pi x}{2a} + 0.01 \sin \frac{5\pi x}{2a} \right). \quad (\dagger)$$

(i) Use the separation variable techniques to find the general solution of the diffusion equation

$$\frac{\partial \Theta}{\partial t} = D \frac{\partial^2 \Theta}{\partial x^2}$$

satisfying the boundary conditions (\ast). \hspace{1cm} (20\,\text{marks})

(ii) Use the results of (i) to obtain the solution satisfying the initial condition (\dagger). \hspace{1cm} (2\,\text{marks})

(iii) You are given that $D = 2 \times 10^{-4}$ m2/s, $a = 1$ m, and $\Theta_0 = 50$° C. Use the fact that the first term in (\dagger) is much larger than the second term to estimate how long it takes for the maximum temperature along the bar to decay to 1° C. \hspace{1cm} (3\,\text{marks})
A reaction-diffusion equation describing locally the calcium-stimulated-calcium-release mechanism is
\[
\frac{\partial u}{\partial t} = -A(u - u_1)(u - u_2)(u - u_3) + D \frac{\partial^2 u}{\partial x^2},
\]
where \(D > 0 \) is the diffusion coefficient, \(A, u_1, u_2 \) and \(u_3 \) are positive constants, and \(0 < u_1 < u_2 < u_3 \).

(i) Using our standard technique of assuming a wave solution \(u(x, t) = U(z) \) with \(z = x + ct, \ c > 0 \), show that \(U(z) \) satisfies the second-order ordinary differential equation for the wave profile \(U(z) \),
\[
DU'' = cU' + A(U - u_1)(U - u_2)(U - u_3). \tag{*}
\]
Introducing \(V = U' \) rewrite this equation as the system of two first-order differential equations. Find the critical points of this system. \((5 \text{ marks})\)

(ii) You are given that any solution of the first-order equation
\[
U' = -\alpha(U - u_1)(U - u_3), \tag{\dagger}
\]
where \(\alpha \) is a constant, satisfies equation \((*)\). Use this condition to determine \(\alpha \) and \(c \). \((10 \text{ marks})\)

(iii) Find the solution of equation \((\dagger)\) (which is also a solution of equation \((*)\)) that satisfies the boundary conditions \(U \to u_2 \) as \(z \to -\infty \) and \(U \to u_3 \) as \(z \to \infty \). \((10 \text{ marks})\)
5

(i) Prove that, if f is independent of x, i.e. $f = f(y, y')$, then

$$f - y' \frac{\partial f}{\partial y'} = \text{const}$$

is a first integral of the Euler-Lagrange equation. \hfill (5 marks)

(ii) The Fermat principle states that light propagates between two points, A and B, along a path that minimizes the travel time. The speed of light in a medium is c/n, where $c = \text{const}$ is the speed of light in empty space, and $n \geq 1$ is the refraction index of the medium. Hence, the ray of the light is an extremal of the functional

$$I = \int_A^B n \ ds,$$

where s is the length along the ray. In particular, when A and B are in the xy-plane, their coordinates are $A(x_0, y_0)$ and $B(x_1, y_1)$, $x_0 < x_1$, and $n = n(x, y)$, then

$$I = \int_{x_0}^{x_1} n(x, y) \sqrt{1 + y'^2} \ dx.$$

(a) You are given that n is independent of x. Show that the ray of the light is given by $y = y(x)$, where $y(x)$ is a solution of equation

$$n = C \sqrt{1 + y'^2},$$

where C is a constant. \hfill (5 marks)

(b) You are given that $n = \sqrt{1 + (y/a)^2}$, where $a > 0$ is a constant. Find the equation of the family of all rays that pass through the coordinate origin. Consider the cases $C = 1$ and $C \neq 1$ separately.

(You can take without proof that $\int dy/\sqrt{y^2 + h^2} = \sinh^{-1}(y/h)$, where \sinh^{-1} is the function inverse to sinh and h is a constant.) \hfill (15 marks)

End of Question Paper
List of Basic Formulae and Theorems

Theorem 1: If a periodic solution of the system of equations

\[\dot{x} = f(x, y), \quad \dot{y} = g(x, y) \]

exists in a simply connected region, then \(f_x + g_y = 0 \) somewhere in that region.

Corollary: There are no periodic solutions in any simply connected region where \(f_x + g_y \neq 0 \) everywhere.

Theorem 2: The orbit \(C \) of a periodic solution must enclose at least one critical point.

Orthogonality conditions for trig functions

\[\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = 0, \quad \int_{-\pi}^{\pi} \cos mx \cos nx \, dx = 0 \quad \text{when} \quad m \neq n. \]

\[\int_{-\pi}^{\pi} \sin mx \cos nx \, dx = 0. \]

Extremals of functional

\[J[y] = \int_{x_0}^{x_1} f(y, y', x) \, dx \]

are the solutions to the Euler-Lagrange equation

\[\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0. \]